Meécanique
Chapitre 7

Introduction a la mécanique du solide

@ Mouvement d'un solide (cinématique)

@ Approche énergétique dans le cas d'un systéme déformable

3 - Mouvement de rotation autour d'un axe fixe

Lgr g z a
1 - Définition d'un solide ||2 - Mouvement de translation a/ Définition > w(t)=6
indéf bl I'orientation reste fixe
Inderormable cas part. b/ Vitesse d'un
- Translation rectiligne point du solide
- Translation circulaire U(M) = rwép

@ PFD pour un systéeme (dynamique)

1 - Centre d'inertie d'un systéme (G) 2 - Quantité de mouvement | | 3 - Théoreme de la résultante
= barycentr m d'un systéme dynamique pour un systéme
exl.D:i éc;ioinfsd:e(s;nl is?nej)o? — myOM; + meOMs . , di(G) =

P =mi(G) m =Y FE
M,y G My dt i N
1kg ' Zlkg résultantes des forces extérieures
@ Solide en rotation : approche avec le théoreme du moment cinétique
1 - Moment cinétique d'un solide 2 - Moment d'une action mécanique sur un solide
axeAfixe: op = Jaw = Jab a/ Cas d'une force avec point d'application M/ : I'p, = (OM A F) - €,
L>moment d'inertie P
3 - Théoréme du moment cinétique DR c/ Liaison pivot
- axe Oz fixe ET - réf. galiléen résultante nulle parfaite =moment nul selon son axe
moment C

dUOz il
= FZR
02 _ ¥, Tou(F)

moments et couples externes

4 - Application : pendule pesant

@ Solide en rotation : approche avec le théoreme de I'énergie cinétique

1 - Energie cinétique 2 - Puissance d'une action mécanique 3 - Théoréeme de I'énergie cinétique
rotation autour | ) sur un solide . axe Oz fixe ET - réf. galiléen
axe Afixe : F, — §JA 62 | |Force avec point d'application M: P = F - #(M) dE. _ . P(F)
Liaison pivot parfaite = puissance nulle dt ‘ 1\
actions externes

1 - Différences avec le cas du solide 2 - Exemple du "tabouret d'inertie"
PFD et TMC : pas de changement D
dE =
TEC: dtc = Zz P(le/ actions externes et internes

Ce

| gt

»o

qu’il faut connaitre

(cours : 1)
Quelle est la définition d’un solide (sous-entendu indéformable ou idéal) ?
(cours : 11)
Quelle est la définition du centre d’inertie G (ou centre de masse) d’un systéme de points? (— c’est le barycentre

des masses)

Donner la relation mathématique dans le cas d’un systéme de deux points M7 et Ms de masses my et ma (— O(i =
— —
[m10M1 + mQOMg]/[ml + mg])

Comment est définie la quantité de mouvement d’un systéme de points My, ..., Mx 7 (— c’est la somme des quantités
de mouvement de chaque point)
Comment s’exprime plus simplement cette quantité de mouvement du systéme, en fonction notamment de la vitesse
de son centre d’inertie G? (— p'= mv(G))
Comment s’énonce le théoréme de la résultante dynamique pour un solide (ou pour un systéme en général) ?

(cours : 111)

Comment s’écrit le moment cinétique d’un solide par rapport & un axe A, étant donné sa vitesse angulaire et son
moment d’inertie par rapport a cet axe?
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»; Comment est défini, lorsqu’il existe, le point d’application d’une force ?
»; Quelle est la définition d’un couple ? (— action mécanique dont la résultante est...)
»s Que peut-on dire lorsqu’une liaison pivot est supposée parfaite ? (en termes de moment et de puissance)

»9 Comment s’énonce le théoréme du moment cinétique pour un solide en rotation autour d’un axe fixe ?

(cours : 1V)
>0 Comment s’écrit I’énergie cinétique d’un solide en rotation autour d’un axe A fixe, étant donné sa vitesse angulaire
et son moment d’inertie par rapport & cet axe?

»;1 Comment s’énonce le théoréme de I’énergie cinétique pour un solide en rotation autour d’'un axe fixe ?

Ce gu’il faut savoir faire

(cours : 1)

»,> Pour un solide, savoir reconnaitre un mouvement de translation (et les cas particuliers de translation rectiligne ou
circulaire) ainsi qu’un mouvement de rotation autour d’un axe fixe.

»13 Soit un solide en rotation autour d’un axe fixe, a la vitesse angulaire w, M un point du solide et R la distance entre
M et I'axe. Comment s’exprime la vitesse ¥ du point M ?
(cours : 11I)
»1, Relier qualitativement le moment d’inertie & la répartition des masses.
»; Utiliser le théoréme du moment cinétique pour étudier un mouvement de rotation autour d’un axe fixe. — EC1,EC2

(cours : 1V)
»1s Utiliser le théoréme de I’énergie cinétique pour étudier un mouvement de rotation autour d’un axe fixe. — EC3

Exercices de cours

Exercice C1 — Application du TMC dans le cas d’un seul couple

On considére un disque en rotation autour d’un axe fixe Oz. La liaison pivot selon cet axe implique
un couple de frottement noté C, proportionnel a la vitesse angulaire de rotation w : C' = —aw avec z
« pris constant. On note J le moment d’inertie du solide par rapport a 'axe Oz.

1 - Quel est le signe de a?

e\

2 - Appliquer le théoréme du moment cinétique afin de trouver I’équation du mouvement.
3 - La résoudre en supposant qu’on lance le disque avec une vitesse angulaire initiale wy.

Correction :

1 - Le couple de frottement est résistif. Si w > 0, alors le disque tourne dans le sens direct autour de I’axe, et le couple
C doit donc étre négatif pour empécher cette rotation directe, donc il faut C' < 0.

Conclusion :

2 - *x Référentiel terrestre galiléen.
* Bilan des actions mécaniques : il n’y a que 'action de la liaison pivot, de couple C.
* Moment cinétique par rapport a 'axe Oz : 0p, = Jw.

* Théoréme du moment cinétique :

doo. dJw dw  «
7 = C, donc & - W donc i Jw(t).

3 - Solution : w(t) = Ae™ 7! avec A constante d’intégration, que I'on détermine grace a la CI w(0) = wp, d’ott A = wp, et

w(t) = wee 7t
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Exercice C2 — Pendule pesant, méthode avec le TMC

On considére un solide en rotation autour d’un axe fixe Oz. La liaison pivot selon cet axe est supposée parfaite. G est le
centre d’inertie du solide. Le référentiel d’étude est supposé galiléen. On note J le moment d’inertie du solide par rapport
a laxe Oz, et myoy sa masse totale.

1 - Appliquer le théoréme du moment cinétique afin de trouver I’équation du mou-
vement.

2 - On se place dans 'approximation des oscillations de petite amplitude. Donner

I’expression de la pulsation du mouvement.

Comparaison avec le modéle du pendule simple (ponctuel) (facultatif en
colle) :

On propose ici de faire le lien avec les résultats trouvés dans les chapitres précédents
sur le pendule.

Concreétement, on peut prendre une forme particuliére pour le pendule : une tige rigide
de masse m et longueur L maintient une masse en forme de disque de rayon R et masse
M (cf second schéma).

Le moment d’inertie de I’ensemble par rapport & 'axe Oz est alors donné par :

1 1
J= 5MR2+ML2 - gmL2 . (1)

contribution masse M contribution tige

3 - D’aprés le schéma, que faut-il pour se rapprocher du modeéle du pendule ponctuel
(condition sur M et m et sur R et L).

4 - Montrer que sous ces conditions, on a myo; ~ M et J ~ ML?, et qu’on retrouve

w = 1/%, ce qui est la pulsation que nous avions obtenue dans les chapitres

précédents pour le pendule simple (pendule simple = tige de masse nulle ou
ficelle, et masse M ponctuelle).

Correction :

1 - *x Référentiel terrestre galiléen.

* Bilan des actions mécaniques :

— La liaison pivot, parfaite donc moment par rapport & I’axe Oz nul.

— La pesanteur, de moment par rapport a 'axe Oz donné par

FOZ = (O? A mtotg) . gz
= (Lgr A mtotggz) . gz
= (—=Lmyotgsinfé,) - €, (signe moins car fait tourner dans le sens indirect

= —Lmyorgsinf

* Moment cinétique par rapport a 'axe Oz : 0p, = J 0.

* Théoréme du moment cinétique : zV
do Jé - Myt L
Oz _ I'o., donc ——— = —myotLgsin®, donc |6+ Mot 29 sinf = 0.
dt dt
- Mot L Miot L
2 - Sif < 1rad, alors on a 0+ t(j]t 99 = 0, équation de l'oscillateur harmonique ou la pulsation est | wg = ti’]t J.

3-Ilfaut m <K M et R L.

L ML
4 - On a en effet ce que dit ’énoncé pour my.t et pour J. Alors : wy = \/mt(j]t g _ MLg = %
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Exercice C3 — Pendule pesant, méthode avec le TEC

On considére un solide en rotation autour d’un axe fixe Oz. La liaison pivot selon
cet axe est supposée parfaite. G est le centre d’inertie du solide. Le référentiel
d’étude est supposé galiléen. On note J le moment d’inertie du solide par rapport
a l'axe Oz, m sa masse.

1 - Appliquer le théoréme de I’énergie cinétique afin de trouver I’équation du
mouvement.

2 - On se place dans 'approximation des oscillations de petite amplitude.
Donner 'expression de la pulsation du mouvement.

Qy
-

Correction :
1 - *x Référentiel terrestre galiléen.

* Bilan des actions mécaniques :

— La liaison pivot, parfaite donc puissance nulle : P(pivot) = 0.

— La pesanteur, de puissance : € - € = cosf
_ €y €p = —sinb
P(mg) = mg - U(G) = mgé, - LOey
= —mgLfsinf (cf schéma)
f : 1,
* Energie cinétique de rotation : E. = §J9 .
* Théoréme de I’énergie cinétique :
dE, 1 dé? .
T - P(mg) + P(pivot), d’ou ijﬁ = —mgLfsin 6.
ez .. . ~ mL
Or T 2606, donc en simplifiant par € on obtient | 6 + meg sinf = 0.
: i, mLg S . . \ : mLg
2 - Sif < 1rad, alors on a 6 + TG = 0, équation de l'oscillateur harmonique ou la pulsation est | wy = —

Cours

On dit qu’une tartine beurrée tombe toujours avec le c6té beurré au sol. Comment mettre en équation un tel probléme de
physique ?

Avec les chapitres précédents nous ne pouvions pas, car nous nous sommes intéressés a la dynamique de points matériels.
Modéliser la tartine par un point matériel et appliquer le PFD permet de connaitre la trajectoire de son centre de masse,
mais nous perdons toute information sur la rotation de la tartine sur elle-méme.

L’objectif du présent chapitre est donc d’étendre la mécanique a des solides (donc non ponctuels).

11 s’agit d’une introduction, et vous voyez/verrez a ce sujet bien plus de choses en SII.

| — Mouvement d’'un solide (cinématique)
1 — Définition d’un solide

On parle de “systéme” pour désigner un objet ou ensemble d’objets, auquel on peut appliquer les principes de la mécanique.
Par exemple : une roue, une voiture, une balle, un lampadaire...

En général un systéme est déformable (s’il est constitué de plusieurs pieces mobiles).

— | Définition : solide |

Un solide (sous-entendu : indéformable) est un systéme dont tous les points restent a distance constante les uns
des autres.

Il s’agit d’un modéle idéal. C’est aux solides qu’on s’intéresse dans cette partie I.
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2 — Mouvement de translation

,_[ Définition : mouvement de translation ]

Un solide est en mouvement de translation si son orientation est fixe au cours du mouvement.

On peut formuler ceci de trois fagons équivalentes :
» Pour tous points A et B du solide, le vecteur zﬁ reste constant au cours du mouvement.

» Au cours du mouvement, les trajectoires de chacun de points du solide sont les mémes mais décalées les unes
par rapport aux autres.

» A chaque instant, quels que soient les points A et B du solide, #(A) = #(B).

Remarque : la nature du mouvement dépend bien stir du référentiel dans lequel il est décrit.

Exemple : le solide ci-dessous suit un mouvement de translation.

)
é@ 2

Deux cas particuliers de translations :

» Translation rectiligne : lorsque la trajectoire de chaque point du solide est une droite.

Ms

» Translation circulaire : lorsque la trajectoire de chaque point du solide est un arc de cercle.

s P M laire.
My

L]
- |
=

\

Attention, c’est une translation donc le solide ne tourne pas sur lui-méme : son orientation reste fixe.
De plus, les rayons des cercles sont les mémes, mais pas les centres.

3 — Mouvement de rotation autour d’un axe fixe

a/ Définition du mouvement

Exemple : chaque nacelle est en translation circu-

,_[ Définition : rotation autour d’un axe fixe ]

Soit A un axe fixe.

Un solide est en rotation autour de A si la trajectoire de chacun de ses points est un cercle dont le centre est sur
l’axe.

De fagon équivalente : la distance entre un point du solide et 'axe A reste constante au cours du temps.
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Exemple : ’ensemble du manége est en rotation
autour de l'axe central.

Autre exemple : un pendule (cf schéma de ’EC2)
est en rotation autour de son axe.

b/ Vecteur vitesse d’un point du solide

Coordonnées cylindriques d’axe Oz = ’axe de rotation.
Soit un point M du solide, de coordonnées (7,0,z).

| Propriétés sur les vitesses d’un solide en rotation ]
J

de .
— On appelle vitesse angulaire le paramétre w = i 0 [rad/s|.
» La vitesse angulaire w = 0 ne dépend pas du point M considéré.
On peut parler de LA vitesse angulaire du solide.

» Le vecteur vitesse d’un point M du solide est tangent au cercle décrit par M, de
norme r|w| avec r la distance a l’axe.

Démonstration :

» Point 1 : évident.

» Point 2 : ~; Utiliser les coordonnées cylindriques d’axe A : (M) = 7¢é, + r0Ey + i€,.

Or ici 7 = cst et z = cst, donc on a ¥(M) = rwéy, ce qui prouve ce qu'il faut.

Il — PFD pour un systéme déformable ou solide (dynamique)

1 — Centre d’inertie d’un systéme

| Définition du centre d’inertie d’un systéme ]

Le centre d’inertie (ou centre de masse) d’un systéme, noté G, est le barycentre des masses du systéme.

Dans le cas de deux masses m; et mo situées en My et Ms, le centre d’inertie vérifie

— ——
O? _ mi1OM; + moOM,y
mi + meo

ou O est l'origine du repére que l'on place ou cela nous arrange.

Exemple : soit une masse m; = 1kg en M7 et une masse my = 2kg en Ms.

~+9 Trouver la position de G. M1 M2
(indication : placer le point O ou cela nous arrange, en M; par exemple, puis 1,kg z‘kg
utiliser la relation ci-dessus)

Réponse : on place O au point Mj.
Par définition on a (m; + mg)O% = m1OM; + moOMs,.
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— —  2—
Or ici OM; = 0, donc on a O? = %OMQ = EOMQ, donc G est a deux tiers du segment [M; Ms).
mq mo

- s
Remarque : (pas dans le poly éléves) le centre d’inertie vérifie aussi miGM; + moGMs = 0.

Cette relation, et celle encadrée ci-dessus, sont les deux fagons de définir un barycentre. On passe de cette derniére a celle
encadrée en introduisant le point O et en utilisant Chasles : ml(@ + OMy) +mq (C@ + OM,) =0, etc...

> (pas a savoir) Dans le cas de N masses my, ..., my, situées en M, ..., My,

on pose Mot = »_, m;. On note O T'origine fixe du repére.

O?: L me

Mtot

Le centre d’inertie est donné par :

» (pas a savoir) Dans le cas d’un solide, il faut le découper en petits morceaux, chacun centré sur un point M et de
masse infinitésimale dm. On remplace alors la somme ci-dessus par une intégrale :

1 —
0C — / dm OM.
M esolide

Mot

2 — Quantité de mouvement d’un systéme

Rappel : la quantité de mouvement d’un point matériel M de masse m et de vitesse T(M) est : g = mv(M).

| Quantité de mouvement d’un systéme ]

Définition : la quantité de mouvement d’un systéme est la somme des quantités de mouvement de tous ses points.

Propriété : cette quantité de mouvement s’écrit :
p=mi(G),

avec m la masse totale du systéme, et ¥(G) la vitesse du centre d’inertie du systéme.

Ainsi pour la quantité de mouvement, tout se passe comme si toute la masse du systéme était concentrée au point
G, avec une vitesse U(G).

Démonstration de la propriété dans le cas d’un systéme de deux points matériels (pas a savoir faire et n’est pas dans le poly
éléves) :

Notons m = my + ms la masse totale, et p'la quantité de mouvement totale (donc la somme de m;9; et de mots).
On a:

dO M, dO M,
+ ma

d — —
az at = ag ﬂ11()A41 +’ﬂ02()ﬂ4§

=(m1+YVL2)O?

p=m

= (my + ma) mi(Q).

do¢
dt

La démonstration pour un systéme quelconque de N points est similaire.

3 — Théoréme de la résultante dynamique pour un systéme

(aussi appelé loi de la quantité de mouvement, théoréme de la résultante cinétique, théoréme du centre d’inertie, PFD
pour un systéme, etc...)

| Théoréme de la résultante dynamique pour un systéme ]

Soit un systéme (déformable ou solide). On note G son centre d’inertie, m sa masse totale (constante), et >, Fila
somme des résultantes des actions extérieures au systéme qui s’appliquent sur lui.

On a : 45(C)
v —
m ; = E F;.

d
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Attention, seules les forces extérieures interviennent. Les forces internes au systéme (qu’une partie du systéme
exerce sur une autre partie du systéme) n’interviennent pas.

Remarques : théoréme admis. La démonstration consisterait & appliquer le PFD a chaque point du systéme et a sommer
tous ces PFD. Les forces internes se simplifient a cause du principe des actions réciproques, et on a le résultat.
Démonstration (hors programme et pas dans le poly éléve) :

On décompose le systéme en NN petites masses quasi ponctuelles. La masse numéro k est soumises & des forces
extérieures de resultante Fext—ﬂm et aussi & des forces de la part des autres masses au sein du systeme dont la
somme s’écrit Z F]%k (Fjﬁk est la force qu’exerce la masse j sur la masse k, avec par convention Fkﬁk = 0)
Ainsi le PFD sur cette masse ponctuelle my donne :

dv 7
dtk = ext—>k + Z

Ensuite on somme ces PFD pour k allant de 1 a N :

zmkd“k zFeM YA

k=1 j=1
N — N 2 N
dvk d 5 d dUG
—Ona: kE_l mkﬁ = a kE_ mrgvr — ? kg_lkaMk = mﬁ
= = =

=m0

— De plus, Zszl ﬁextﬁk représente l’ensemble des forces extérieures qui s’appliquent sur le systéme, qu’on a
noté plus haut par ), F,.

— Et enfin les forces internes donnent : Zk 1 Ej 1 Fj%k = Zk 1 Z] 1 Fk%j T Z;\Ll Zivzl ﬁjﬁ\k.

ppe actlons réciproques chgt d’indices

—

Cette somme est égale & son opposée, donc elle est nulle : ng’:l Zjvzl Fa'j%k =0.

On obtient bien le PFD énoncé dans 'encadré.

Remarque : ainsi pour le PFD, tout se passe comme si on avait un point matériel G de masse m.
Le centre d’inertie G est donc le point ou est concentrée toute la masse du systéme pour ce qui concerne le PFD.
C’est aussi en ce point que s’applique la résultante du poids, d’ott son autre nom : centre de masse.

Ill — Solide en rotation : approche avec le théoréme du moment cinétique

Dans cette partie III, on considére un solide, en rotation autour d’un axe fixe.

~+3 Rappel : pour un point matériel (donc ponctuel) de masse m et vitesse ¥/, donner les expressions du moment
cinétique par rapport & un axe Oz, du moment d’une force F', et le théoréme du moment cinétique.

.= (OMAmD) &, To.(F)=(OMAF)-z, d"OZ 3 Tou(F).

Voyons comment ceci se généralise & un solide en rotation.

1 — Moment cinétique et moment d’inertie d’un solide

Dans le cas d’un systéme de points M; de masses m;, le moment cinétique de ’ensemble (par rapport & un axe) est donné
par la somme des moments cinétiques de chaque point :

= Z OOZ(Mz)

Nous allons voir que dans le cas d’un solide, ceci peut s’exprimer simplement.
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a/ Moment cinétique

| Moment cinétique ]

Soit un solide en rotation autour d’un axe orienté fixe A a la vitesse angulaire w.

OA = JAw,

avec Ja le moment d’inertie du solide par rapport a axe A (unité S.I. : kg - m?).

Son moment cinétique par rapport a A s’écrit

Démonstration (n’est pas a savoir refaire et n’est pas dans le poly éléves) :

Prenons A = Oz (orienté par é,).

Pour obtenir le moment cinétique du solide, on le découpe en morceaux centrés sur des points M,
chacun de masse m;, et on considére chaque morceau comme une masse ponctuelle.

Comme le solide est en rotation autour de laxe, r; = cst et ¥(M;) = 705, avec 0 identique pour
tous les points.

Le moment cinétique de la masse M; par rapport a cet axe est

UOz(Mi) = (OZ@Z /\mZﬁ(Mz)) . 52 = (’/‘ié;« A mi’l"iééb) . gz = mirf 0

Le moment cinétique du solide est la somme des moments cinétiques des points M; :

UOZZZO'OZ(Mi) = Zmirfé = (Zmﬂ"?) 0 = Jo.0 avec |Jo,= (Zmﬁf)

b/ Moment d’inertie

Le moment d’inertie Jp, s’obtient en découpant le solide en morceaux de masses m; centrés sur des points M;, chacun &
. . . 2
distance r; de laxe. Alors : Jo. = (3, mir?) .

— Il dépend de ’axe par rapport auquel il est défini.

— Il rend compte de la répartition de la masse du solide autour de ’axe, et de la difficulté & mettre en rotation le solide
(ou a arréter sa rotation).

On voit sur la formule que plus la masse est répartie loin de I'axe, plus il est important (termes en 72).

(Oz) (Oz)
~~4 Classer les moments d’inertie des solides ci-contre, par rapport a ’axe
Oz, du plus petit au plus grand. (02)
Par rapport a 'axe Oz, on a : Jo < J; = Jg < Jy. 1 2 3 4
(Oz2)

Disque plein ~ ou  Cylindre plein Sphére pleine Tige mince Tige mince
(trou de rayon rnul) I= Z MR? I =1l2ML2 I= % ML?

=

Ci-contre exemples de moment
d’inertie pour des formes simples
(pas a connaitre).

e
(La masse volumique est supposée e
uniforme.) .

Remarque : (n’est pas dans le poly éléves) dans un énoncé, I'expression du moment d’inertie est toujours donnée. En
SII, vous voyez comment le calculer par combinaison de moments d’inertie pour des formes simples. Pour une forme

1R
5 MR

_ '?@m
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quelconque, ou une masse volumique non uniforme, il faut utiliser la formule Jo, = )", m;r?, en remplagant la somme par
une intégrale.

Enfin, le théoréme de Huygens (qui n’est pas au programme de physique) permet d’obtenir le moment d’inertie par rapport
a un axe A paralléle et & une distance d d’un axe passant par le centre d’inertie : Jo = Ja, +md? (m masse de 'objet).

Remarque : pour un point M (ponctuel), on obtient Jo, = mr? et donc un moment cinétique mr260. C’est bien la méme
chose qu’en mécanique du point !

2 — Moment d’une action mécanique sur un solide

_. . —
Pour un point matériel M, une force F' s’applique sur le point M, et son moment par rapport 4 un point Aest 'y = AMAF.

Les choses sont plus compliquées pour un systéme ou un solide. On parle plutoét d’action mécanique. Par exemple
Paction de la pesanteur sur le solide, ou une action de contact (forces de pression, action d’un ressort attaché sur le solide,
d’une liaison pivot, action de contact sur un plan, etc...).

Une action mécanique est caractérisée par un torseur, défini en un point A quelconque par sa résultante F (indépendante
du point A) et son moment I'y en A : 7 = {F,T s} 4.
a/ Moment d’une action mécanique avec point d’application

Le point d’application de Paction mécanique est le point M ou le moment s’annule (si ce point d’application existe,
alors le professeur de SII appellera ce torseur un “glisseur”).

| Moment d’une action mécanique avec point d’application ]

Soit F une résultante, et M son point d’application (on suppose qu’il existe).

Son moment par rapport & un axe Oz, orienté par €,, est

To.(F) = (OM A F) -2,

En effet, on a (toujours, qu’il existe un point d’application ou pas) la relation de Varignon (pas au programme de
hysi :
physique) o )
Fro=Ty+OMAF.
_ . o —
Dans le cas particulier ot M est le point d’application (qu’on suppose exister), alors I'y; =0, ot To = OM A F.

On a donc finalement les mémes formules que pour un point matériel, et les mémes méthodes de calcul. (mais pour un
point matériel ce sont des définitions, alors qu’ici il s’agit d’une propriété)

Remarque : ceci vaut pour une action qui posséde un point d’application (ot le moment s’annule). Dans le cours physique,
ce point d’application est toujours évident :

» Le point d’application de I'action de la pesanteur est le centre d’inertie, ou centre de masse, G.

» Le point d’application d’une force s’exercant en un point A du solide est ce point A.

Par exemple si un ressort est attaché en un point A du solide, le point d’application de I'action du ressort sur le
solide est A.

Cas plus compliqués : action de I’eau sur un barrage, action des frottements sur un plan, ...
Un exemple d’action mécanique qui ne posséde pas de point d’application est un couple.

b/ Couple

| Couple !

Définition : un couple est un cas particulier d’action mécanique pour laquelle la résultante est nulle.

Propriété : le moment d’un couple ne dépend pas du point ou il est calculé. V A, Ty= fo.

On le note en général C' sans préciser le point de référence, et C si c’est le moment par rapport a un axe.

C’est un cas d’action trés important, car il permet de mettre en rotation un objet sans le déplacer dans son ensemble
(d’aprés le théoréme de la résultante dynamique, ma(G) = 0).
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Exemple :

On tourne un volant en exergant avec chaque main une force égale (mais opposée) en F
A et en B.

La somme des forces est nulle, mais ceci entraine tout de méme une rotation du volant.

~»5 On peut calculer ce couple : c’est la somme des deux moments selon ’axe Oz, avec A
la méthode du bras de levier (en notant F = ||F1|| = || F2|)) :

C =T0.(F))+T0.(Fy) = AO x F+ OB x F = AB x F.

—

Fy

On constate que le couple est d’autant plus important que la force est grande et que le bras de levier est grand.

On parle de “couple” a cause de 'exemple ci-dessus : car il est créé par un couple de deux forces.
Cependant ce n’est pas la seule possibilité : un moteur produit un couple sur son axe, certains dispositifs de freinage
également (si leur résultante est nulle), etc.

c/ Cas particulier d’une liaison pivot

| Liaison pivot ] N

Définition : une liaison pivot d’axe A ne permet qu'un seul degré de liberté : une rotation autour de A.

Propriétés :
— La résultante F' associée & cette liaison n’est en général pas nulle.
Concernant le moment scalaire selon 'axe A, T'a :

— S’il y a des frottements, il n’est pas nul. On peut parler de “couple de frottements”, qui résiste au mouvement.

— Si la liaison pivot est parfaite, alors

3 — Théoréme du moment cinétique

| Théoréme du moment cinétique pour un solide en rotation (axe fixe) ]
J

On se place dans un référentiel galiléen.
Soit Oz un axe fize dans ce référentiel, autour duquel tourne le solide.

Soit 00, = Jo,0 le moment cinétique de ce solide par rapport a Oz, et I'p, (15;) les moments des forces externes
appliquées au solide.

dUOz o
On a & z; 0:(F;)

do
S’il y a un couple C' qui intervient, il est & considérer comme un moment : on a d;f)z =C+H ...

= La différence avec le cas d’un point est donc dans 'expression de o¢, : il faut utiliser ’expression m
~~g Faire 'EC1.
4 — Application : le pendule pesant

Jusqu’ici nous avons étudié le pendule simple : toute la masse était concentrée en un point M, situé a une distance [ du
point de pivot. On appelle pendule pesant un modéle plus précis, ol on prend en compte le fait que la masse n’est pas
ponctuelle. Avec nos nouveaux outils, nous pouvons traiter ce cas. ~»7 Faire ’'EC2.

IV — Solide en rotation : approche avec le théoréme de I'énergie cinétique

Dans cette partie IV, on considére un solide, en rotation autour d’un axe fixe.
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~+g Rappel : pour un point matériel (donc ponctuel) de masse m et vitesse ¥, donner les expressions de ’énergie

cinétique, de la puissance d’une force F‘i, et du théoréme de I’énergie cinétique.
. . dE ~
EC:%’I’I’L’UZ, P(F’L):F’Lﬁa dtc :ZzP<Fl>

Voyons comment ceci se généralise & un solide en rotation.

1 — Energie cinétique d’un solide en rotation autour d’un axe fixe

Energie cinétique

Soit un solide en rotation autour d’un axe orienté fixe A a la vitesse angulaire w.

Son énergie cinétique s’écrit

1
Ec: —J 27
D it

avec Ja le moment d’inertie du solide par rapport & 'axe A (unité S.I. : kg - m?).

Démonstration (hors programme, non présente dans le poly éléve) :

L’idée est similaire & la démonstration de la relation oo = Jaw. On découpe le solide en morceaux de masse m;
centrés en M;, et on écrit I’énergie cinétique de I’ensemble :

E. = Z %m,,;v(Z\I,;)Q = Z %miT?WQ = % Zmﬂ"? w?.

‘ (M) =|rw| !

On voit alors qu’on peut sortir le % et le w de la somme, et qu’on a bien le résultat.

Remarque : (pas dans le poly éleve) Cette formule n’est valable que si le solide tourne autour d’un axe fixe. La formule

1 1
générale (pas & connaitre) pour un solide est E. = §mv(G)2 + QJAGwQ avec w vitesse angulaire de rotation autour de

Paxe de rotation qui passe par G, dans le référenciel barycentrique, et 9(G) vitesse du centre de masse du solide.

2 — Puissance d’une action mécanique sur un solide

Tout comme pour le moment d’une action mécanique, la puissance associée est en général complexe & exprimer. Seuls les
cas simples suivants sont a retenir :

| Puissance d’une action mécanique regue par le systéme ]
J

Soit une action mécanique de résultante F et de moment T' M-

» Si l'action mécanique posséde un point d’application A, alors sa puissance s’écrit

P=F- 5(A).

Exemple : la puissance du poids s’écrit P = mg - 0(G).

» La puissance associée a l'action mécanique dune liaison pivot parfaite est nulle.

Remarque : cas d’une liaison pivot qui exerce un couple de frottements ou moteur C' : P = Cw avec w la vitesse angulaire de rotation.

Formule générale (pour un solide) (pas dans le poly éleve) : P = F. U(H) + L'y - @ avec H point quelconque du solide.
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3 — Théoréme de I'énergie cinétique

| Théoréme de ’énergie cinétique pour un solide en rotation (axe fixe) ]
J

On se place dans un référentiel galiléen.

Soit Oz un axe fize dans ce référentiel, autour duquel tourne le solide.
1 .
Soit E. = §J0202 I’énergie cinétique de rotation de ce solide par rapport a Oz.

Soit F; les résultantes appliquées au solide.

E ﬂ
ona : |9 £ = P(F).

1 .
= La différence avec le cas d’un point est donc dans ’expression de F. : il faut utiliser ’expression E. = §J0Z02.

Théoréme admis. Il se démontre en découpant le solide en masses m; centrées sur des points M;, puis en appliquant le
théoréeme de I’énergie cinétique a chaque point et en les sommant tous.

Enfin, pour un solide en rotation le TMC et le TEC sont équivalents. Dans un probléme, il est inutile d’appliquer les deux.
Il faut choisir celui que 'on préfére.

Démonstration (pas dans le poly éléve) : équivalence du théoréme de ’énergie cinétique et du
théoréme du moment cinétique

Notons M; le point d’application de la force F‘z et R; la distance entre I’axe et M;. La vitesse angulaire 6 du point
M; ne dépend pas du point (c’est la méme pour tout le solide). On a :

d (1. 5 ST
TEC : — (QJOZH ) = ZFZ--U(Mi)

On reconnait a gauche la dérivée du moment cinétique.
Quant au terme de droite, il faut écrire que F()Z(ﬁi) = (R;e, A ﬁl) €, = (€. NR;é,)- F. = R;éy - F,.

On retrouve donc exactement le théoréme du moment cinétique.

~~g Faire ’EC3.

| Autres théorémes énergétiques ]
J

On a aussi, comme en mécanique du point :

» La version intégrale du théoréme de I’énergie cinétique : entre un point A et un point B,

AEC = ZWA%B(F"L) avec AEC = Ec(B) - EC(A)

toutes les forces
» Le théoréme de I’énergie mécanique, entre un point A et un point B :

AE.+AE,= Y Wa,p(F)

forces non conservatives

1
On a encore pour la pesanteur E, = mgzg avec z¢ altitude du centre de masse (axe z vers le haut), E, = ik(l —1p)?

pour un ressort, etc.
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V — Approche énergétique dans le cas d'un systéme déformable

On consideére ici un systéme déformable (par opposition a un solide qui lui est indéformable).

Théoréme - Cas du solide - Cas du systéme déformable |

d5(G) .
PFD (ORI Z : Tdem.

K]
——
actions extérieures
do Idem.
Oz = . .

TMC, rotation axe fixe “a ZFOZ (F3) (mais attention, le moment

actions extérieures

d’inertie J dépend du temps si
le systéme se déforme)

TEC, rotation axe fixe

dE, =~
G- P

———

actions extérieures

dE, =
o = 2 PE)

actions extérieures et intérieures

En effet, il peut y avoir des actions internes au systéme (action d’une partie du systéme sur une autre partie).

— Dans le PFD et le TMC, les résultantes et les moments des actions intérieures sont de somme totale nulle : ils
n’interviennent donc pas dans la somme.

— (Cest différent dans le TEC.

Pour un solide, la puissance des forces intérieures est nulle car la vitesse relative des points est nulle

déplacement relatif = pas de travail.

: pas de

Ce n’est plus le cas s’il y a déformation ou mouvement des piéces les unes par rapport aux autres : alors la puissance
des forces intérieures ne disparait pas.

Exemple du “tabouret d’inertie” : cf TD.
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