Partie VIII : Thermodynamique

Fiche méthode

Méthodes

Méthode

Comment démarrer un problème en thermodynamique

On commencera souvent la rédaction en écrivant :

- Système : {le système considéré}, dire s'il est fermé (le cas cette année) ou ouvert. Cette mention est **obligatoire** pour appliquer les principes.
- Transformation : la transformation subie, avec l'état initial (et les valeurs qu'on connaît) et l'état final (et les valeurs qu'on connaît ou qu'on cherche).

Exemple:

Système : n moles de gaz supposé parfait, système fermé.

Transformation: isochore, entre les états

$$\begin{array}{c|c} \text{État initial} & T_B = 20^{\text{o}}\text{C} \\ p_B = 1.0\,\text{bar} & \xrightarrow{\text{isochore, GP}} & \text{État final} & T_C \text{ inconnu} \\ V_B & & V_C = V_B \end{array}$$

Puis on cherche des expressions pour $\Delta U,\,W,\,Q.$ Par exemple :

- si gaz parfait alors $\Delta U = C_v \Delta T$, si phase condensée alors $\Delta U = C \Delta T$; idem pour H mais avec C_p
- si adiabatique alors Q = 0
- si reçoit une puissance thermique P, alors $Q = P \times t$
- si indéformable alors $W_{\text{pression}} = 0$
- en général, $\delta W_{\text{pression}} = -p_{\text{ext}} dV$, et si mécaniquement réversible ou assez lent sans frottements alors $p_{\text{ext}} = p$
- etc...

Comment calculer une entropie créée

On ne peut jamais calculer directement S_c . Il faut donc :

- Utiliser le second principe en isolant $S_c = \Delta S S_e$,
- exprimer ΔS (à l'aide d'expressions fournies),
- exprimer $S_e = \frac{Q_{\text{reçu}}}{T_{\text{ext}}}$ (et donc connaître au préalable $Q_{\text{reçu}}$).

Fiche mémo

Cette fiche est à [compléter / modifier / refaire complètement] selon vos besoins et selon ce que vous trouvez utile dans le cours, les exercices, les DS ou DM. Tout ce qui est ci-dessous est en tout cas à connaître absolument et par cœur.

Pour un gaz parfait : - transformation adiabatique réversible (ou isentropique) $\Rightarrow pV^{\gamma} = \text{cst}$ (ou variantes à retrouver en utilisant $pV = nRT : p^{1-\gamma}T^{\gamma} = \text{cst}, TV^{\gamma-1} = \text{cst}$) - transformation isotherme $\Rightarrow pV = \text{cst}$

Transfert thermique Q: forces de pression seulement, et monobare ou isobare avec $p_A = p_B = p_{\rm ext}$ $Q = \Delta H$ en général $Q = \Delta U - W$

Énergie interne, enthalpie : si gaz parfait $\to \Delta U = C_V \left(T_B - T_A\right)$ et $\Delta H = C_p (T_B - T_A)$ $C_V = nR/(\gamma - 1) \text{ et } C_p = \gamma C_V$ si phase condensée incompressible indilatable $\to \Delta U = \Delta H = C \left(T_B - T_A\right)$ $C_V \simeq C_P = C$

Premier principe : $\Delta E_c + \Delta E_p + \Delta U = W + Q$

Premier principe pour une transformation monobare ou isobare avec $p_A=p_B=p_{\rm ext}$:

 $\Delta H=W'+Q, \quad \text{ avec } W' \text{ travail des forces autre que celles de pression}$ (et on a omis ΔE_c et ΔE_p)

Second principe : $\Delta S = S_e + S_c$, $S_c \ge 0$

Entropie: $\Delta S =$ formule donnée

Entropie échangée : $S_{\rm e}$ $S_{\rm e} = 0$ en contact avec un thermostat donc $T_{\rm ext} = {\rm cst}$ en contact avec plusieurs thermostats $S_{\rm e} = \sum_i \frac{Q_i}{T_{\rm ext},i}$ Entropie créée : $S_{\rm c} = \Delta S - S_{\rm e}$