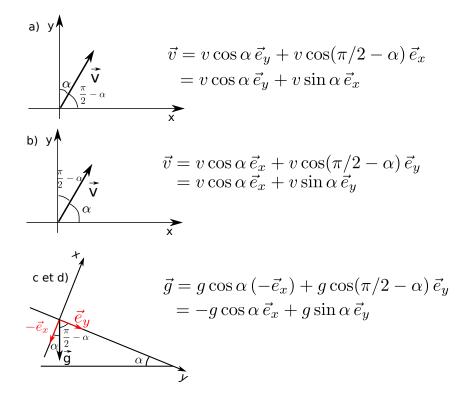

Correction - TD - Introduction à la mécanique du point


I Vrai-faux/questions courtes

* | [• 0 0]

1 -

2 -

IV Lien entre le poids et la pesanteur

- 1 Force exercée par la masse 1 sur la masse 2 : $\vec{F}_{1\to 2} = -G\frac{m_1m_2}{d^2}\vec{u}_{1\to 2}$, avec d la distance entre les centres des corps et $\vec{u}_{1\to 2}$ un vecteur unitaire allant de 1 vers 2.
- 2 Champ de gravitation \vec{g} : il est défini tel que la force d'attraction gravitationnelle exercée par la Terre sur un corps de masse m s'écrit $\vec{P} = m\vec{g}$.

Or on a $\vec{F}_{T\to m}=-G\frac{M_Tm}{R_T^2}\vec{u}_{1\to 2}$ avec $R_T=6400\,\mathrm{km}$ le rayon terrestre, $M_T=6\times 10^{24}\,\mathrm{kg}$ la masse de la Terre.

Par identification, on a $g = \frac{GM_T}{R_T^2}$.

On a
$$g = 9.8 \,\mathrm{m\cdot s^{-2}}.$$

3 -
$$[g] = m \cdot s^{-2}$$
.

Pour G il faut utiliser l'expression de la force gravitationnelle, qui indique que $1 \text{ N} = [G] \times \frac{\text{kg}^2}{\text{m}^2}$.

Or
$$N = kg \cdot m \cdot s^{-2}$$
 (utiliser $P = mg$ par exemple).

Donc
$$[G] = \mathbf{m}^3 \cdot \mathbf{kg}^{-1} \cdot \mathbf{s}^{-2}$$
.