DS 4

Correction - physique-chimie - E-pH et CCP TSI 2016

I Diagramme E-pH de l'argent

1 - $Ag_{(s)}: 0$; $Ag_{(aq)}^+: +I$; $Ag_2O_{(s)}: +I$ (2x-2=0).

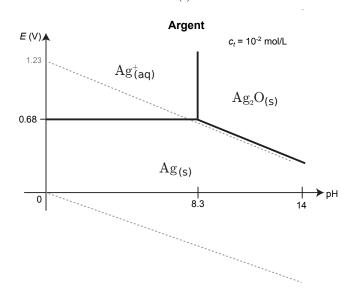
 ${\bf 2}$ - ${\rm Ag_{(s)}}$ est en bas, ${\rm Ag_{(aq)}^+}$ et ${\rm Ag_2O_{(s)}}$ sont en haut.

Parmi ces deux derniers, pour savoir lequel est à gauche ou à droite, on écrit l'équation acide/base entre les deux :

$$Ag_2O_{(s)} + 2H_{(aq)}^+ = 2Ag_{(aq)}^+ + H_2O_{(l)}$$

C'est du type $AH = A^- + H^+$ avec donc la base A^- du côté de H^+ .

Ici la base est donc $Ag_2O_{(s)}$, qui sera donc côté pH élevé.



3 - Demi-équation d'oxydoréduction :

$$Ag_2O_{(s)} + 2H_{(aq)}^+ + 2e^- = 2Ag_{(s)} + H_2O_{(l)}$$

Formule de Nernst :

$$\begin{split} E &= E_{\mathrm{Ag_2O_{(s)}/Ag_{(s)}}}^0 + \frac{0.06}{2} \log[\mathrm{H^+}]^2 \\ &= E_{\mathrm{Ag_2O_{(s)}/Ag_{(s)}}}^0 + 0.06 \log[\mathrm{H^+}] \\ &= E_{\mathrm{Ag_2O_{(s)}/Ag_{(s)}}}^0 - 0.06 \mathrm{pH} \end{split}$$

On trouve donc une pente de -0.06 V/u.pH.

4 - On écrit que sur la frontière il y a présence des solides, et que la réaction donnée dans l'énoncé est à l'équilibre. On a donc $K^0 = Q_r = [\mathrm{HO}^-]^2 [\mathrm{Ag}^+]^2$.

On force l'apparition de [H⁺], puis on utilise $K_e = [\mathrm{H^+}][\mathrm{HO^-}] = 10^{-\mathrm{pKe}}$ avec pKe = 14, et le fait que sur la frontière [Ag⁺] = C_{tr} :

$$K^{0} = \frac{[H^{+}]^{2}[HO^{-}]^{2}[Ag^{+}]^{2}}{[H^{+}]^{2}}$$
$$= \frac{K_{e}^{2}C_{tr}^{2}}{[H^{+}]^{2}}$$

On trouve que $\log K^0 = -2pKe + 2\log c_{\text{tracé}} + 2pH$,

d'où
$$\boxed{\mathrm{pH} = \frac{1}{2} \log K^0 + \mathrm{pKe} - \log c_{\mathrm{trac\acute{e}}} = 8.3.}$$

5 - $Ag_{(s)}$ est stable vis à vis de $H_2O_{(l)}$ à tout pH, car à tout pH les domaines de ces deux espèces sont disjoints.

"Eau aérée" signifie eau dans laquelle est présent du dioxygène dissout. $Ag_{(s)}$ n'est pas stable vis à vis de $O_{2(g)}$ pour des pH inférieurs à 8.3, car les domaines de ces deux espèces ne sont alors pas disjoints. Il sera en revanche stable pour des pH supérieurs car les domaines de $Ag_{(s)}$ et de $O_{2(g)}$ ont une (petite) zone commune (le K^0 de la réaction sera légèrement inférieur à 1).

6 - En milieu basique, $Ag_{(s)}$ sera oxydé en $Ag_2O_{(s)}$, et $O_{2(g)}$ réduit en $H_2O_{(l)}$.

On écrit les demi-équations pour chacun de ces deux couples :

$$2 Ag_{(s)} + H_2O_{(l)} = Ag_2O_{(s)} + 2 H_{(aq)}^+ + 2 e^-$$

et:

$$O_{2(g)} + 4H_{(aq)}^{+} + 4e^{-} = 2H_{2}O_{(l)}$$

On somme ensuite deux fois la première et une fois la deuxième afin de faire disparaître les électrons. On obtient :

$$4 \operatorname{Ag}_{(s)} + O_{2(g)} = 2 \operatorname{Ag}_{2}O_{(s)}.$$

Problème I - Mirages acoustiques

I.1 – La propagation du son

I.1.a Une onde est la propagation de proche en proche d'une grandeur physique dans un milieu. Elle se fait sans transport macroscopique de matière.

L'amplitude de la grandeur varie en fonction de l'espace et du temps, les deux variations étant reliées par l'équation différentielle décrivent la propagation de l'onde.

À une onde acoustique est associée la variation de pression et de vitesse des couches de fluide.

- I.1.b Son milieu de propagation est un milieu matériel (pas de propagation dans le vide). On peut citer les ondes à la surface de l'eau suite à une perturbation, ou les ondes le long d'une corde tendue.
- I.1.c Ondes sonores audibles : entre 20 Hz et 20 kHz.

Les ultrasons correspondent à des fréquences supérieures à 20 kHz. Ils sont utilisés dans les sonars, l'échographie, les radars de recul des voitures, les sifflets pour chiens, pour faire fuir certains animaux, etc.

I.1.d La vitesse de propagation de la lumière de l'éclair est de 300 000 km/s, très supérieure à celle du son, et on suppose donc qu'elle est instantanée.

Soit t_0 l'instant d'émission de l'éclair et du son à l'endroit de l'impact.

 t_0 est donc aussi l'instant de réception de l'éclair lumineux.

L'instant de réception du tonnerre a lieu à un instant $t_1 = t_0 + \frac{d}{c_{\text{air}}}$.

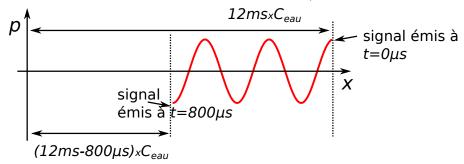
D'après le texte $d = \frac{t_1 - t_0}{3}$ avec d en km et $t_1 - t_2$ en secondes.

On a donc par identification, $c_{\text{air}} = 1000/3 = 333 \,\text{m/s}$.

I.2.a Le sonar émet une onde sonore, s'il y a présence d'un objet ou obstacle à l'avant du sonar alors l'onde est réfléchie et revient vers le sonar. Le sonar enregistre l'onde reçue. Du temps mis par la propagation on en déduit la distance entre l'objet et l'obstacle.

I.2.b
$$L = \frac{\Delta t_e \times c_{\text{mer}}}{2} = 29.1 \,\text{m}.$$

- **I.2.c** On a 2.5 périodes dans l'intervalle Δt_i . Donc $T = \frac{\Delta t_i}{2.5}$, puis $f = \frac{2.5}{\Delta t_i} = 3.13 \, \text{kHz}$.
- **I.2.d** $\Delta x = c_{\text{mer}} \times \Delta t_i = 1.2 \,\text{m}.$
- **I.2.e** À l'instant $t_1 = 12 \,\text{ms}$ le signal s'étend de $x = (t_1 \Delta t_i) \times c_{\text{eau}} = 16.8 \,\text{m}$ (fin de l'impulsion, c'est le dernier minimum à $t = \Delta t_i$ de la figure 2) jusqu'à $x = t_1 \times c_{\text{eau}} = 18 \,\text{m}$ (début de l'impulsion, c'est le premier maximum à t = 0 de la figure 2).



- **I.2.f** Même chose que la figure 2 du sujet, mais décalé dans le temps : le signal commence à $t=L/c_{\rm mer}=19.4\,{\rm ms}.$
- **I.3.a** $c_0 = 347.0 \,\mathrm{m/s}.$

I.3.b
$$c_0 = \sqrt{\frac{\gamma R T_0}{M}}$$
. On note $T = T_0 + \Delta T$ et $c = c_0 + \Delta c$.

On a donc
$$c = \sqrt{\frac{\gamma RT}{M}} = \sqrt{\frac{\gamma R(T_0 + \Delta T)}{M}} = \sqrt{\frac{\gamma RT_0}{M}} \sqrt{1 + \frac{\Delta T}{T_0}} = \sqrt{\frac{\gamma RT_0}{M}} \left(1 + \frac{\Delta T}{2T_0}\right) = c_0 \left(1 + \frac{\Delta T}{2T_0}\right).$$

D'où
$$\Delta c = c_0 \times \frac{\Delta T}{2T_0}$$
. On trouve $0.6\,\mathrm{m/s}$ pour $\Delta T = 1\,\mathrm{K}$.

I.3.c Il fait plus froid en haut que proche du sol. La vitesse du son est donc plus faible en haut, plus grande proche du sol. Il en résulte que les "rayons" sonores sont incurvés comme sur le schéma ci-dessous.

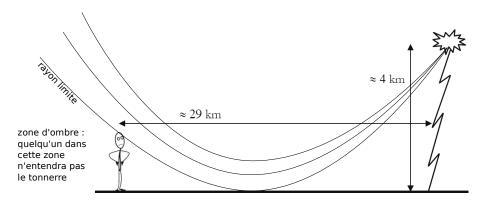


FIGURE 4 – Un orage silencieux

Problème II - Eau oxygénée et propulsion

II.1 – Concentration d'une eau oxygénée

 ${f II.1.a}\ Z$ donne le nombre de protons dans le noyau, et donc également le nombre d'électrons pour un atome neutre.

A donne le nombre de nucléons dans le noyau (donc de protons + neutrons).

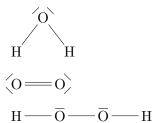
On a donc ici, pour l'hydrogène H : 1 proton, 1 électron.

Et pour l'oxygène O : 8 protons, 16 - 8 = 8 neutrons, 8 électrons.

II.1.b Hydrogène H : 1s¹. Il y a un électron de valence : 1s¹. Lewis : H•

Oxygène O : $1s^22s^22p^4$. Il y a six électrons de valence : $2s^22p^4$. Lewis : O:

II.1.c Schémas de Lewis :



Prenons un atome d'hydrogène d'hydrogène dans la molécule d'eau. Il est entouré d'un doublet, et possède donc deux électrons : la règle du duet est satisfaite.

Prenons l'atome d'oxygène de la molécule d'eau. Il est entouré de 4 doublets, il possède donc 8 électrons : la règle de l'octet est vérifiée.

 $\mathbf{II.1.d} \; \star \; \mathrm{Dans} \; \mathrm{H_2O} : \boxed{\mathrm{n.o.(H)} = +\mathrm{I,} \; \mathrm{n.o.(O)} = -\mathrm{II}} \; (\mathrm{cas} \; \mathrm{classique}, \; \mathrm{pas} \; \mathrm{d'exception} \; \mathrm{ici}).$

Dans $O_2: \boxed{\text{n.o.}(O) = 0}$ (en posant x = n.o.(O), on a 2x = 0 donc x = 0).

Dans H_2O_2 : n.o.(H) = +I (cas classique), mais un n.o. de -II est impossible pour O car sinon on aurait une charge totale de $2 \times 1 + 2 \times (-2) = -2$, or H_2O_2 est neutre. Il faut donc poser x = n.o.(O), on a $2 \times 1 + 2x = 0$, donc x = -1, d'où $\boxed{\text{n.o.}(O) = -I}$.

- \star Il y a donc existence du couple $\rm H_2O_2/H_2O,$ où le n.o. de l'oxygène est de -I dans l'oxydant $\rm H_2O_2$ et de -II dans le réducteur $\rm H_2O.$
- \star Il y a également existence du couple O_2/H_2O_2 , où le n.o. de l'oxygène est de 0 dans l'oxydant O_2 et de -I dans le réducteur H_2O_2 .

$$\label{eq:couple H2O2/H2O} \text{Couple } H_2O_2/H_2O: \boxed{ H_2O_{2\,(aq)} + 2\,H_{(aq)}^+ + 2e^- = 2\,H_2O_{(l)}. }$$

On somme les deux demi-équations afin d'éliminer les électrons. On obtient :

$$2 H_2 O_{2 \text{ (aq)}} = 2 H_2 O_{(l)} + O_{2 \text{ (g)}}.$$

II.1.f Une dismutation est une réaction dans laquelle une même espèce chimique est consommée en jouant à la fois le rôle d'oxydant et de réducteur.

Une réaction de médiamutation est la réaction inverse.

Ici on est en présence d'une dismutation, car H_2O_2 joue à la fois le rôle d'oxydant et de réducteur.

II.1.g On peut placer les deux couples sur l'échelle des E^0 (on place l'oxydant à gauche, le réducteur à droite). La règle du gamma est alors respectée, et on en déduit que la réaction (3) sera thermodynamiquement favorisée dans le sens direct (son K^0 est grand devant 1).

II.1.h Prenons un volume V de solution. La masse de cette solution est $m = (\mu d)V$, avec μ la masse volumique de l'eau et d la densité de la solution.

La masse de H_2O_2 dans cette solution est donc $m_{H_2O_2} = x (\mu d)V$ avec x = 3%.

La quantité de matière de
$$H_2O_2$$
 est $n=\frac{m_{H_2O_2}}{M_{H_2O_2}}=\frac{x\mu d\,V}{M_{H_2O_2}}.$
Et la concentration est $C=\frac{n}{V}$, soit $C=\frac{x\mu d}{M_{H_2O_2}}=0.92\,\mathrm{mol/L}.$

(Attention pour l'A.N. à mettre M en kg/mol, et au fait que le résultat est en mol/m³ par défaut.)

II.2 – Décomposition de l'eau oxygénée

II.2.a La vitesse de la réaction est v = k C(t) car on fait l'hypothèse d'un ordre 1 par rapport à l'eau

Et on sait également que $\frac{dC}{dt} = \frac{d[H_2O_2]}{dt} = \nu_i v$, avec $\nu_i = -2$ le coefficient stœchiométrique de

On a donc
$$dC = -2k C(t)$$
.

D'autre part, la vitesse de disparition de H_2O_2 est $v_{\text{disp},H_2O_2} = -\frac{d[H_2O_2]}{dt} = -\frac{dC}{dt}$.

On a donc
$$v_{\text{disp},H_2O_2} = 2k C(t)$$
.

 $k \text{ est en s}^{-1}$.

II.2.b
$$\frac{\mathrm{d}C}{\mathrm{d}t} = -2k\,C(t).$$

II.2.c Solution :
$$C(t) = C_0 e^{-2kt}$$
.

II.2.d Le temps de demi-réaction est défini par la relation $C(t_{1/2}) = C_0/2$.

On a donc
$$C_0 e^{-2kt_{1/2}} = C_0/2$$
, soit $t_{1/2} = \frac{\ln(2)}{2k} = 1.73 \times 10^2 \text{ s}$, soit 2 min et 53 s.

II.2.e On ne peut pas commenter grand chose...

II.3 – Propulseur à eau oxygénée

II.3.a On utilise la loi de Hess. On obtient $\Delta_r H^0(298\text{K}) = -196 \,\text{kJ/mol.}$

Le signe négatif indique que la réaction est exothermique, ce qui implique que l'on peut s'en servir comme carburant (il y aura donc potentiellement montée en température et en pression).

II.3.b Tableau d'avancement, en moles :

	$2{\rm H}_{2}{\rm O}_{2({\rm l})}$	$=2\mathrm{H_2O_{(g)}}$	$+ O_{2(g)}$
E.I.	1	0	0
ξ	$1-2\xi$	2ξ	ξ
E.F. $(\xi = \xi_{\text{max}} = 0.5)$	0	1	0.5

Dans l'état final, le réactif est épuisé car on indique que la réaction est totale. L'avancement est donc maximal. Il est donné par l'épuisement du réactif, soit $1-2\xi_{\rm max}=0$, donc $\xi_{\rm max}=0.5\,{\rm mol}$. On complète alors les deux cases pour les produits dans l'E.F.

- II.3.c On considère le système {ensemble des composants physico-chimiques}. La transformation est un avancement ξ_{max} de la réaction. On la suppose ici isotherme et isobare.
 - * Réaction chimique d'avancement ξ_{max} , isotherme à 25°C : $\Delta H = \xi_{\text{max}} \Delta_r H^0$.
 - * Premier principe version isobare et $p = p_{\text{ext}}$: $\Delta H = Q_{\text{recu}} = -Q_{\text{cédé}}$.
 - * On a donc $Q_{\text{céd\'e}} = -\xi_{\text{max}} \Delta_r H^0$.

Application numérique avec $\xi_{\rm max}=0.5\,{\rm mol}$ (ce qui correspond à 1 mole de ${\rm H_2O_2}$ consommée) : $Q_{\rm c\acute{e}d\acute{e}}=98\,{\rm kJ}.$

On a donc un transfert thermique cédé, par mole de H_2O_2 consommée, $Q_m = -\frac{\Delta_r H^0}{2} = 98 \,\mathrm{kJ/mol}$.

Soit, par unité de masse de ${\rm H_2O_2}$ consommée, $q=-\frac{\Delta_r H^0}{2M_{{\rm H_2O_2}}}=2.88\,{\rm MJ/kg.}$

- II.3.d Le catalyseur accélère la réaction, qui sinon est lente. Il est donc indispensable.
- II.3.e ★ Le premier principe indique que, entre l'entrée et la sortie d'un système en écoulement stationnaire :

$$\Delta h + \Delta e_c + \Delta e_p = w_i + q,$$

avec $\Delta h = h_s - h_e$ la variation d'enthalpie massique, $\Delta e_c = \frac{1}{2}(v_s^2 - v_e^2)$ la variation d'énergie cinétique massique, $\Delta e_p = g(z_s - z_e)$ la variation d'énergie potentielle de pesanteur, w_i le travail massique indiqué reçu (travail autre que celui des forces de pression d'admission et de refoulement, donc travail fourni par les parties mobiles dans le système), et q transfert thermique massique reçu.

 \star Pour l'appliquer il faut choisir le système. On prend ici le fluide en écoulement dans la tuyère. On a $w_i=0$ car il n'y a pas de parties mobiles dans la tuyère, et q=0 car la tuyère est calorifugée. On néglige également Δe_p .

On a donc $\Delta e_c = -\Delta h$.

Or la température en sortie de tuyère est plus faible que celle en entrée (car les gaz arrivant en entrée ont été chauffés par la réaction chimique précédente). Donc $\Delta h < 0$. Donc $\Delta e_c > 0$, il y a bien accélération des gaz.

II.3.f On a
$$\Delta e_c = \frac{1}{2}(v_{\rm gaz,max}^2 - v_e^2) \simeq \frac{v_{\rm gaz,max}^2}{2}$$
.
D'où $v_{\rm gaz,max} = \sqrt{2(h_e - h_s)}$.

- II.3.g \star Si on suppose les gaz parfaits, on a $h_e h_s = c_{\rm p,tot}(T_c T_f)$ avec $T_c = 1350$ °C la température des gaz en entrée de la tuyère (température obtenue grâce à la décomposition exothermique de l'eau oxygénée), et $T_f = 400$ °C la température des gaz en sortie de la tuyère.
 - \star Il faut trouver la capacité thermique massique à pression constante $c_{\rm p,tot}$ du mélange s'écoulant dans la tuyère, c'est-à-dire du mélange de O_2 et H_2O produit par la réaction. Attention, les capacités massiques ne s'ajoutent pas, seules les capacités molaires le font. Il faut donc passer par celles-ci.

On considère une mole de H₂O₂ consommée, ceci représente une masse

$$m = 1 \text{ mol} \times M_{\text{H}_2\text{O}_2} = 34.02 \text{ g}.$$

Ceci produit 0.5 mole de O₂ et 1 mole de H₂O, soit une capacité thermique totale

$$C_{\text{tot}} = 0.5 \,\text{mol} \times C_{p,m}(\mathcal{O}_{2(g)}) + 1 \,\text{mol} \times C_{p,m}(\mathcal{H}_2\mathcal{O}_{(g)}).$$

On a donc

$$c_{\rm p,tot} = \frac{C_{\rm tot}}{m} = \frac{0.5C_{p,m}({\rm O}_{2({\rm g})}) + C_{p,m}({\rm H}_2{\rm O}_{({\rm g})})}{M_{\rm H_2O_2}} = 2.33 \times 10^3 \, \rm J \cdot K^{-1} \cdot kg^{-1}$$

* On obtient alors
$$v_{\rm gaz,max} = \sqrt{2c_{\rm p,tot}(T_c - T_f)} = 2104\,{\rm m/s}.$$

II.3.h L'énergie coûteuse est ici le transfert thermique fourni par kg d'eau oxygénée consommée, et

l'énergie utile est l'énergie cinétique massique en sortie du dispositif. On a donc bien $\eta = \frac{v_{\rm gaz}^2}{2q}$.

Ici on a
$$\eta = 0.77$$
.

Il s'agit d'un rendement maximal car on a effectué un certain nombre d'hypothèses idéales (tuyère calorifugée, $T_c = 1350$ °C donnée par un raisonnement de température de flamme (et même supérieur... voir remarques), gaz parfaits).

II.3.i D'après 3.c, la réaction de décomposition de l'eau oxygénée fournit un transfert thermique massique $q = 2.88 \,\mathrm{MJ/kg}$ (par kg d'eau oxygénée consommée).

Pour avoir la puissance associée, il faut utiliser $P_{\text{th}} = D_m \times q$, avec D_m le débit massique d'eau oxygénée.

On a ici
$$D_m = \frac{\mu_{\text{H}_2\text{O}_2} \times 2V_{\text{H}_2\text{O}_2}}{\Delta t} = \frac{2 \times 19.0 \,\text{L}}{21.0 \,\text{s}}$$
 (il y a deux bouteilles).
D'où $P_{\text{th}} = \frac{2q \,\mu_{\text{H}_2\text{O}_2} V_{\text{H}_2\text{O}_2}}{\Delta t} = 7.50 \,\text{MW}.$

II.3.j
$$\eta_{\text{r\'eel}} = \frac{1.10\,\text{MW}}{7.50\,\text{MW}} = 0.15$$
. C'est bien inférieur au rendement théorique maximal de 0.77, ce qui est normal car il s'agit du système r\'eel (tuyère non calorifugée, réaction pas nécessairement totale, température T_c en fin de combustion inférieure, gaz non parfaits, etc...).

Remarque:

- Dans la question 3.c on a supposé que la réaction est isobare isotherme. Ce n'est pas le cas en pratique, la chaleur dégagée par la réaction sert justement à chauffer le mélange réactionnel lui-même. Ce chauffage mène à la température de $T_c=1350^{\circ}\mathrm{C}$ de l'énoncé, température des gaz avant leur entrée dans la tuyère. Le calcul de la question 3.c pour q est toutefois valide si on effectue l'approximation d'Ellingham.
- Le rendement calculé en question 3.h est un peu étrange, car on a calculé $v_{\rm gaz,max}$ sans se servir de la valeur de q, mais en utilisant la valeur $T_c=1350$ °C donnée dans l'énoncé. Mais à quoi correspond cette température? À la température mesurée dans le système réel? Si c'est le cas, alors η correspond à un mélange entre un rendement expérimental et un rendement théorique. Ou bien à une température calculée par un raisonnement simplifié?

Voyons ce que cela donnerait en théorie. Avec un raisonnement classique qui utilise le premier principe pour un écoulement ouvert (transfert thermique massique reçu q, évolution supposée isobare), ou bien avec un calcul de température de flamme, on obtient pour la température du mélange après réaction chimique :

$$T_{\text{max}} = T_i - \frac{\xi_{\text{max}} \Delta_r H^0}{\xi_{\text{max}} C_{p,m}(\mathcal{O}_{2(g)}) + 2\xi_{\text{max}} C_{p,m}(\mathcal{H}_2 \mathcal{O}_{(g)})}$$
$$= T_i - \frac{0.5 \Delta_r H^0}{0.5 C_{p,m}(\mathcal{O}_{2(g)}) + C_{p,m}(\mathcal{H}_2 \mathcal{O}_{(g)})}$$
$$= 1261^{\circ} \mathcal{C}$$

(On a pris $T_i=25$ °C.) C'est différent de la température $T_c=1350$ °C donnée dans l'énoncé, en étant (étonnamment) légèrement inférieur.

On obtient alors $v_{\text{gaz,max}} = 2003 \,\text{m/s}$, et $\eta = 0.70$.

• On peut d'ailleurs, en utilisant l'expression de T_{max} ci-dessus, obtenir des expressions complètes. On a, en passant les calculs :

$$v_{\text{gaz,max}}^2 = 2 \frac{C_{p,m,tot}}{M_{\text{H}_2\text{O}_2}} (T_{\text{max}} - T_f) = \dots = 2q - 2c_{\text{p,tot}} (T_f - T_i),$$

avec T_i température initiale du mélange (avant réaction chimique, 25°C ici), et T_f température du mélange en sortie de la tuyère (400°C ici).

Puis:

$$\eta = \frac{v_{\text{gaz,max}}^2}{2q} = 1 - \frac{c_{\text{p,tot}}(T_f - T_i)}{q}.$$

On voit donc mieux pourquoi le rendement n'est pas égal à 1 : c'est parce qu'une partie de l'énergie q fournie par la réaction chimique sert non pas à accélérer les gaz, mais à échauffer les gaz de leur température initiale T_i à leur température finale T_f .

Si
$$T_i = T_f$$
, on a $\eta = 1$.

Enfin, on peut s'étonner du fait que si $T_i > T_f$, on a $\eta > 1$. Mais c'est parce dans ce cas on n'exploite pas uniquement q, mais aussi le refroidissement de T_i à T_f : le rendement est alors mal défini.

Problème III - Débimètres

III.1 – L'effet Venturi

III.1.a Un fluide parfait peut être défini comme un fluide de viscosité nulle. Il n'adhère pas aux parois, et la vitesse dans une section droite est donc uniforme.

III.1.b On a
$$D_m = \mu \pi R_E^2 v_E$$
. D'où $v_E = \frac{D_m}{\mu \pi R_E^2} = 2.39 \,\text{m/s}$.

III.1.c L'écoulement étant stationnaire, le débit massique se conserve.

On a donc
$$\mu \pi R_E^2 v_E = D_m = \mu \pi R_S^2 v_S$$
, d'où $v_S = v_E \times \frac{R_E^2}{R_S^2} = 9.55 \,\mathrm{m/s}$.

III.1.d La relation de Bernoulli s'applique pour un écoulement parfait, incompressible et stationnaire, entre deux points d'une même ligne de courant.

Elle indique alors que la quantité $\frac{p}{\mu} + \frac{1}{2}v^2 + gz$ est constante entre ces deux points.

L'axe z est vers le haut.

III.1.e Les hypothèses précédentes sont réunies ici. On a donc, le long d'une ligne de courant entre E et S:

$$\frac{p_E}{\mu} + \frac{1}{2}v_E^2 + gz_E = \frac{p_S}{\mu} + \frac{1}{2}v_S^2 + gz_S.$$

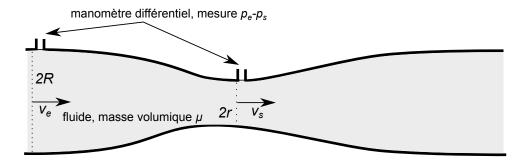
Or $z_S = z_E$, $v_E = \frac{D_m}{\mu \pi R_E^2}$ et $v_S = \frac{D_m}{\mu \pi R_S^2}$, d'où :

$$\Delta p = p_S - p_E = \frac{D_m^2}{2\pi^2 \mu} \left(\frac{1}{R_E^4} - \frac{1}{R_S^4} \right).$$

III.1.f Si $R_S < R_E$, on a d'après l'expression précédente $\Delta p < 0$, donc $p_S < p_E$.

III.1.g
$$\Delta p = -4.27 \times 10^4 \,\mathrm{Pa} = -0.43 \,\mathrm{bar}.$$

III.1.h On utilise le dispositif schématisé ci-dessous.

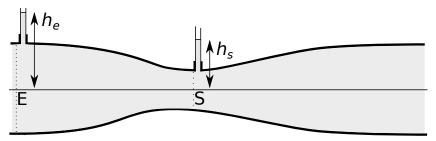


D'après la formule précédente on obtient le débit massique, et donc le débit volumique $q = D_m/\mu$,

via :
$$q = \sqrt{\frac{2\pi^2(p_e - p_s)}{\mu(R^{-4} - r^{-4})}}$$
.

III.1.i Plusieurs possibilités :

• On place des tubes horizontaux et on mesure la différence de hauteur d'eau.



Il faut en pratique que le diamètre de la conduite soit négligeable devant la hauteur dans les tuyaux horizontaux, afin de négliger la variation de pression sur une section droite de la conduite (ou alors que l'écoulement soit laminaire, pour que la loi de l'hydrostatique s'applique horizontalement).

On a alors, avec la loi de l'hydrostatique appliquée dans les tuyaux horizontaux : $p_e = p_0 + \mu g h_e$, $p_s = p_0 + \mu g h_s$, et ainsi $p_e - p_s = \mu g (h_e - h_s)$.

- On utilise un tube en U avec un liquide au fond.
- On utilise un manomètre différentiel (qui mesure la déformation d'une membrane qui sépare un compartiment à p_e et un autre à p_s , à l'aide de jauges de contraintes par exemple). C'est plutôt ceci qui est utilisé industriellement.

III.2 – Débimètre à turbine

III.2.a Si q est constant, il s'agit d'une équation différentielle linéaire du premier ordre à coefficients constants.

Les solutions sont du type solution particulière, soit $\omega_P = \frac{K_1 \mu q}{K_2}$, plus solution de l'équation homogène, soit $\omega_H = A e^{-K_2 q t}$.

Donc $\omega(t) = \frac{K_1 \mu q}{K_2} + A e^{-K_2 q t}$ avec A une constante dépendant de la condition initiale.

Ce serait une solution de type régime transitoire, lors d'un échelon de débit par exemple (ouverture ou fermeture d'un robinet).

- III.2.b Oui, car on voit typiquement une charge ou une décharge exponentielle, comme prédit par l'équation précédente. Et également car l'équation précédente décrit effectivement la réponse $\omega(t)$ suite à un échelon de débit.
- **III.2.c** D'après l'équation (10) du sujet, ω doit être constant si on veut q proportionnel à ω . On a alors $\omega = \frac{K_1 \mu}{K_2} q$.

C'est aussi le cas sur la figure.

Suite à un changement de débit q, ω revient à une valeur constante au bout de quelques $\tau = \frac{1}{K_2 q}$.

III.2.d Le volume d'eau consommé est l'intégrale de q(t), donc l'aire sous la courbe q(t).

Le volume mesuré via la vitesse de rotation est l'intégrale de $\omega(t)$, donc l'aire sous la courbe $\omega(t)$ (à une constante multiplicative près qui permet de faire coïncider les deux courbes en régime permanent).

On voit qu'à l'ouverture, l'aire sous la courbe ω est inférieure à celle sous la courbe q: on sous estime la consommation.

Au contraire à la fermeture, l'aire sous la courbe ω est supérieure à celle sous la courbe q: on surestime la consommation.

Au final, on peut estimer que lors d'une ouverture puis fermeture du robinet ces deux erreurs se compensent plus ou moins.

III.2.e L'équation 10 est $\frac{d\omega}{dt} = K_1 \mu q^2 - K_2 q\omega$.

On suppose ici que $q(t) = q_0 + q_1 \cos(2\pi f t)$.

L'équation 10 étant non linéaire en q, on n'aura pas $\omega(t) = \omega_0 + \omega_1 \cos(2\pi f t + \varphi)$.

On peut néanmoins supposer que c'est le cas, au premier ordre, si la fluctuation q_1 est $\ll q_0$. On a alors aussi $\omega_1 \ll \omega_0$.

Pour f=0, on a nécessairement la relation du régime stationnaire $K_1\mu q_0^2=K_2q_0\omega_0$, soit $q_0=\frac{K_2}{K_1}\omega_0$.

Si on regarde l'ordre de grandeur des trois termes dans l'équation 10, on a :

- $\frac{\mathrm{d}\omega}{\mathrm{d}t} \sim 2\pi f \omega_1$
- $\bullet \ K_1\mu q^2 \sim K_1\mu q_0^2$
- $K_2 q \omega \sim K_2 q_0 \omega_0$

On voit dans les ordres de grandeurs que la fréquence intervient seulement dans le premier terme. Les deux termes suivants sont du même ordre de grandeur d'après la relation $q_0 = \frac{K_2}{K_1}\omega_0$.

Il faut négliger le premier terme si on veut retrouver la relation de proportionnalité du régime stationnaire.

C'est donc pour f petit qu'on a bien la relation de proportionnalité du régime stationnaire, et pour f grand qu'on a un écart important.

(Plus précisément, il faut
$$f \ll \frac{K_1 \mu q_0^2}{2\pi\omega_1} = \frac{K_2 q_0 \omega_0}{2\pi\omega_1}$$
, avec ω_1 qui dépend de $f...$)

III.2.f La présence du débimètre perturbe l'écoulement et entraine une perte de charge. L'intérêt d'un débimètre rétractable est donc de n'induire ceci que lors d'une mesure de débit, et non pas en permanence.

De plus, ceci use moins le débimètre.

Enfin, dans un écoulement réel, la vitesse de l'écoulement n'est pas uniforme dans une section droite. Il faut donc placer le débimètre (qui ici est petit par rapport à la section) à l'endroit où la vitesse est sensiblement égale à la vitesse moyenne de l'écoulement, ceci afin d'obtenir la bonne expression du débit $D_v = \iint_S v dS = S \times v_{\text{moy}}$.