Partie II : Thermodynamique et fluides

Chapitre 6

Fiche de cours – Transferts d'énergie par conduction thermique

Ceci est un exemple <u>minimal</u> de fiche de cours concernant ce chapitre. Je vous encourage à vous en inspirer pour faire votre propre fiche (écrire votre fiche vous aidera à retenir), qui pourra être plus complète, plus personnelle, avec des schémas, des couleurs, des flèches...

▶ Définitions de grandeurs :

Flux thermique Φ_{th} (aussi appelé puissance thermique P_{th}) à travers la surface orientée S: donne le transfert thermique δQ à travers S par unité de temps. On a :

$$\delta Q = \Phi_{\rm th} dt = P_{\rm th} dt$$

Vecteur densité de flux thermique $(\vec{j}_{\mathrm{th}}$ ou $\vec{j}_{Q})$:

$$\Phi_{\rm th} = \iint_{S} \vec{j}_{\rm th} \cdot \overrightarrow{dS} \qquad (\text{avec } \overrightarrow{dS} = dS \, \vec{n})$$

$$\Phi_{\rm th} = j_{\rm th}S \qquad (1D, \text{ avec } \vec{n} = \vec{e}_x \text{ et } \vec{j}_{\rm th} = j_{\rm th}(x, t)\vec{e}_x)$$

▷ Unités :

$$- [\delta Q] = J (= W \cdot s).$$

$$- [\Phi_{th}] = [P_{th}] = W (= J/s).$$

$$-\left[j_{\rm th}\right] = {\rm W/m^2}$$

▶ Loi de Fourier :

$$\vec{j}_{\rm th} = -\lambda \, \overrightarrow{\operatorname{grad}} \, T$$

$$\boxed{\vec{j}_{\rm th} = -\lambda \left(\frac{\partial T}{\partial x}\right)_t} \quad \text{(1D, avec } T = T(x,t) \text{ et } \vec{j}_{\rm th} = j_{\rm th}(x,t)\vec{e}_x)$$

Remarques:

- $\triangleright \lambda$ est la **conductivité thermique** du matériau, unité : W·m⁻¹·K⁻¹. Ordre de grandeur : qq 10² pour les métaux ; 1 pour verre ou béton ; 10⁻² pour un isolant (laine de verre...).
- \triangleright Sens du transfert thermique : des T élevés vers les T basses (d'où le signe moins).
- $\qquad \qquad \rhd \ \, \text{Coordonn\'ees cart\'esiennes} : \overrightarrow{\text{grad}} \, T = \left(\frac{\partial T}{\partial x}\right)_{y,z,t} \vec{e_x} + \left(\frac{\partial T}{\partial y}\right)_{z,x,t} \vec{e_y} + \left(\frac{\partial T}{\partial z}\right)_{x,y,t} \vec{e_z}.$

► Équation de la chaleur :

$$\left[\left(\frac{\partial T}{\partial t} \right)_{x,y,z} = \kappa \, \Delta T \right]$$

$$\left[\left(\frac{\partial T}{\partial t} \right)_x = \kappa \, \left(\frac{\partial^2 T}{\partial x^2} \right)_t \right] \quad (1D)$$

Remarques:

 \triangleright **Hypothèses** pour le cas général : ρ , λ , c_p uniformes et constants, ni sources ni pertes. Évolution isobare.

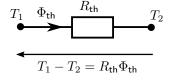
Pour la version 1D : il est sous-entendu que tout ne dépend que d'une coordonnée cartésienne, T(x,t) par ex.

- ightharpoonup Cas 1D cartésien, ni pertes ni sources, et **régime stationnaire** : $\frac{\partial^2 T}{\partial x^2} = 0$ donc T(x) = Ax + B.
- $\triangleright \kappa$ est le **coefficient de diffusion thermique** (aussi appelé **diffusivité thermique**, noté D). Unité à retrouver avec l'équation : $[\kappa] = m^2 \cdot s^{-1}$.
 - \rightarrow Lien entre temps τ et longueur L caractéristiques : $\boxed{L^2/\tau = \kappa.}$
- \triangleright Coordonnées cartésiennes : le Laplacien est la somme des dérivées partielles secondes par rapport à x, y puis z.
- \triangleright Conditions aux limites : continuité de $\Phi_{\rm th}$, ou de T si contact parfait.

► Résistances thermiques :

En régime stationnaire, on a une relation :

$$T_1 - T_2 = R_{\rm th}\Phi_{\rm th}.$$



Remarques:

- → Association en parallèle ou en série : même chose qu'en électricité.

▶ Loi de Newton pour le transfert conducto-convectif :

$$\varphi_{\text{th,paroi} \to \text{fluide}} = h(T_{\text{paroi}} - T_{\text{fluide}})$$
 [W/m²]

Remarques:

- $ho \varphi_{\mathrm{th,paroi} \to \mathrm{fluide}}$ est une puissance thermique par unité de surface. Pour obtenir le flux total à travers une surface $S: \Phi_{\mathrm{th}} = S \times \varphi_{\mathrm{th,paroi} \to \mathrm{fluide}}$.
- $\triangleright h$ est le coefficient conducto-convectif de Newton, il dépend du matériau de la paroi, du fluide au contact avec la paroi, et de la force des mouvements convectifs dans le fluide.
- \triangleright On peut introduire une résistance thermique équivalente : $T_{\text{paroi}} T_{\text{fluide}} = R_{\text{th}} \Phi_{\text{th}}$ avec $R_{\text{th}} = \frac{1}{hS}$.