Physique-chimie – DS 4

- Toute A.N. sans unité ne comptera aucun point, et dégradera l'humeur du correcteur.
- Vérifiez l'homogénéité de vos relations.
- Encadrez vos résultats et soignez votre copie.

l Suspension de voiture $_$

Sur un véhicule, les suspensions ont de multiples fonctions. Elles servent notamment :

- à améliorer le confort des occupants ;
- à améliorer la tenue de route en maintenant le contact entre les roues et le sol malgré ses irrégularités (amélioration de la sécurité) ;
- à diminuer l'effet, sur l'ensemble des organes mécaniques, des vibrations et impacts dus aux irrégularités de la route (diminution de l'usure et du risque de rupture).

Il existe différents types de suspensions et, dans ce problème, nous nous intéresserons à un type très répandu : les suspensions à ressorts. De manière simplifiée, ces suspensions se composent d'un ressort qui assure la liaison entre les roues (masses non suspendues) et la caisse (masse suspendue) et d'un système d'amortissement.

Le but de ce problème est d'étudier certaines caractéristiques des suspensions à ressort. En particulier, nous étudierons les mouvements verticaux du véhicule dans différentes situations : véhicule non amorti, véhicule amorti en régime libre, véhicule se déplaçant sur un sol non plat... Pour l'ensemble du problème, le référentiel d'étude est le référentiel terrestre considéré comme galiléen.

Le véhicule est soumis au champ de pesanteur terrestre g.

Données:

champ de pesanteur : $g = 10 \text{ m.s}^{-2}$.

Hypothèses:

tout au long du problème, on considèrera que :

- l'extrémité supérieure du ressort est en contact avec le véhicule et l'extrémité inférieure du ressort est reliée à une roue qui se trouve en contact avec le sol ;
- la roue reste en contact avec le sol à tout instant ;
- les dimensions de la roue sont telles qu'on la suppose ponctuelle de sorte qu'elle suit parfaitement le profil de la route, y compris lorsque le sol n'est pas plat.

Notations:

dérivées temporelles :

pour une fonction x(t) les dérivées temporelles seront notées :

$$\dot{x}(t) = \frac{dx(t)}{dt}$$
 et $\ddot{x}(t) = \frac{d^2x(t)}{dt^2}$;

fonctions complexes:

pour une fonction $x(t) = X_m \cos(\omega t + \varphi)$.

On notera
$$\underline{x}(t) = X_m \exp[j(\omega t + \varphi)] = X_m e^{j\varphi} e^{j\omega t} = X_m e^{j\omega t}$$
,

où $x(t) = Re(\underline{x})$ et $\underline{X}_m = X_m e^{j\varphi}$ (\underline{X}_m représente l'amplitude complexe de x).

On a donc
$$X_m = |\underline{X_m}|$$
 et $\varphi = \arg(\underline{X_m})$.

Première partie : suspension sans amortissement

Le véhicule à vide (masse suspendue) est assimilé à une masse $m=1,0 \times 10^3$ kg. La suspension est constituée d'un ressort de masse négligeable, de raideur $k=1,0 \times 10^5$ N.m⁻¹ et de longueur au repos l_0 .

Dans cette première partie, on néglige tout amortissement. On ne s'intéresse qu'au mouvement de translation verticale du véhicule.

La position du véhicule est repérée par sa coordonnée z(t), l'axe Oz étant vertical, orienté vers le haut et muni d'un vecteur unitaire \overrightarrow{u}_z (figure 1).

z(t) représente la coordonnée de l'extrémité supérieure du ressort.

A l'équilibre, en l'absence de tout mouvement vertical, la position du véhicule est repérée par sa coordonnée z_e .

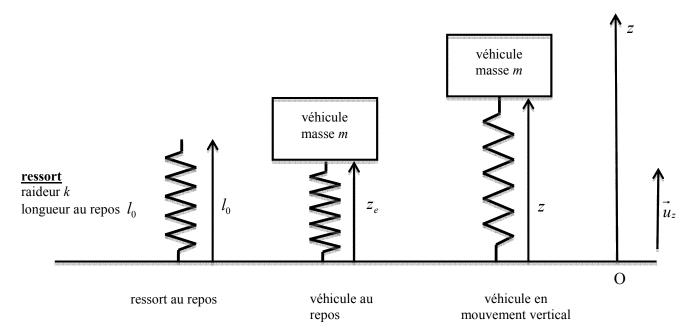


Figure 1: suspension sans amortissement

- 1 Faire le bilan des forces auxquelles le véhicule est soumis lorsqu'il est hors d'équilibre. On détaillera clairement chaque force en indiquant sa direction, son sens et sa norme.
- 2 En appliquant le principe d'inertie (première loi de Newton), écrire la relation (équation (1)) entre ces différentes forces lorsque le véhicule est à l'équilibre. En déduire l'expression de la cote z_e à l'équilibre en fonction de m, g, k et l_0 .
- 3 En appliquant le principe fondamental de la dynamique (deuxième loi de Newton) au véhicule lorsqu'il est hors d'équilibre, déterminer l'équation différentielle (équation (2)) vérifiée par z(t). L'équation (2) reliera les différentes grandeurs z_e , k, m, z(t) et ses dérivées temporelles.
- **4** Donner la solution générale de l'équation (2). Déterminer les expressions littérales de la pulsation propre ω_0 et de la période propre T_0 de la suspension en fonction de k et m. Déterminer les valeurs numériques de ω_0 et T_0 .

- 5 On suppose qu'un opérateur appuie sur le véhicule et l'amène dans une position repérée par la cote z_0 avec $z_0 < z_e$. A un instant t = 0, choisi comme origine du temps, le véhicule est lâché sans vitesse initiale. Déterminer la solution z(t) de l'équation (2) en prenant en compte les conditions initiales précédentes. Exprimer z(t) en fonction de t, z_e , ω_0 et z_0 .
- 6 Tracer l'allure de z(t) et faire apparaître sur le graphique les cotes minimale z_{min} , maximale z_{max} et moyenne z_{moy} ainsi que la période propre T_0 .

Donner les expressions des cotes minimale z_{min} , maximale z_{max} et moyenne z_{moy} en fonction de z_e et z_0 .

Deuxième partie : suspension avec amortissement

On suppose dans cette partie que la suspension décrite dans la partie précédente comporte maintenant un dispositif qui exerce, sur le véhicule de masse m, une force d'amortissement visqueux donnée par $\vec{F} = -h\vec{v}$ où \vec{v} représente la vitesse verticale du véhicule par rapport à la roue et h un coefficient appelé coefficient de frottement fluide (figure 2).

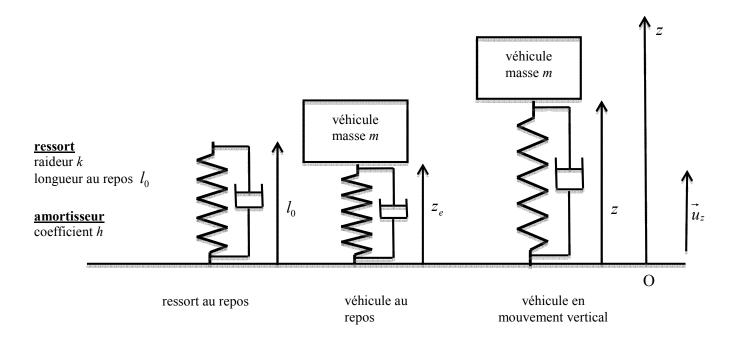


Figure 2: suspension avec amortissement

- 7 Quelle est l'unité de *h* dans le système international ?
- 8 Faire le bilan des forces appliquées au véhicule hors d'équilibre. On détaillera clairement chaque force en indiquant sa direction, son sens et sa norme. Ecrire la relation entre ces différentes forces lorsque le véhicule est à l'équilibre.
- 9 En appliquant le principe fondamental de la dynamique (deuxième loi de Newton) au véhicule hors d'équilibre, déterminer l'équation différentielle vérifiée par la coordonnée z(t) au cours du temps. L'équation reliera les différentes grandeurs z_e , k, h, m, z(t) et ses dérivées temporelles.
- 10 Ecrire les conditions portant sur les paramètres m, k et h pour que la suspension se trouve respectivement dans les régimes pseudopériodique, critique et apériodique.

- 11 Véhicule en charge et vieillissement de la suspension.
- 11.1 Si l'amortissement est tel que la suspension se trouve en régime critique lorsque le véhicule est à vide, dans quel régime se trouve-t-il lorsque le véhicule est en charge? Justifier qualitativement la réponse.
- 11.2 Dès lors, comment choisir la valeur de l'amortissement pour que le véhicule ne soit pas en régime pseudopériodique même lorsqu'il est en charge ? Justifier qualitativement la réponse.

Le véhicule se déplace maintenant sur un sol non plat. La position verticale du point bas de la suspension (roue) est repérée par la variable $z_s(t)$ (figure 3). Il est rappelé que, par hypothèse, la roue est considérée comme ponctuelle et reste à tout instant en contact avec le sol.

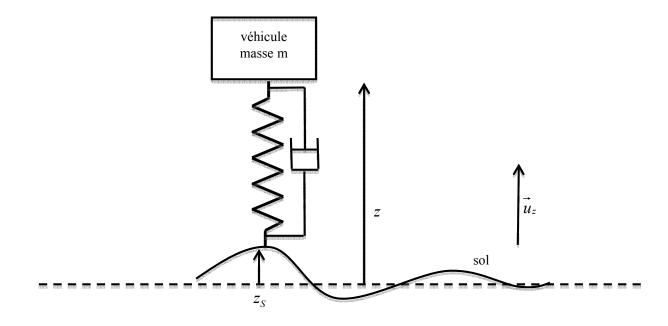


Figure 3 : véhicule sur un sol non plat de profil quelconque

- 12 Nous nous placerons pour cette question dans le cas particulier où le véhicule se déplace sur une route telle que :
 - pour $t < t_1$; $z_s(t) = z_1$ où z_1 est une constante positive et $t_1 > 0$;
 - pour $t > t_1$; $z_s(t) = 0$.

Pour illustrer la situation, on pourra imaginer qu'à l'instant t_1 le véhicule descend d'un trottoir de hauteur z_1 et rejoint une route plane et horizontale de cote nulle.

On considère que, pour $t < t_l$, la cote z(t) du véhicule est constante, c'est-à-dire que le véhicule se déplace en régime permanent.

- **12.1** Donner l'allure de z(t) pour t variant entre 0 et $t >> t_1$ lorsque la suspension est en régime pseudopériodique.
- **12.2** Donner l'allure de z(t) pour t variant entre 0 et $t >> t_1$ lorsque la suspension est en régime apériodique.

On précisera clairement sur chaque graphique la valeur de z pour $0 \le t \le t_1$ et la valeur de z pour t tendant vers l'infini.

Troisième partie : régime forcé

Dans cette partie, le véhicule se déplace horizontalement avec une vitesse constante v_1 .

Il est rappelé que, par hypothèse, la roue est considérée comme ponctuelle et reste à tout instant en contact avec le sol.

Ici encore la position verticale du point bas de la suspension (roue) est repérée par la variable $z_s(t)$ (figure 4).

Dans cette partie, le véhicule se déplace sur un sol ondulé horizontal sinusoïdal.

On a donc $z_s(t) = z_{s0} \cos(\omega t)$.

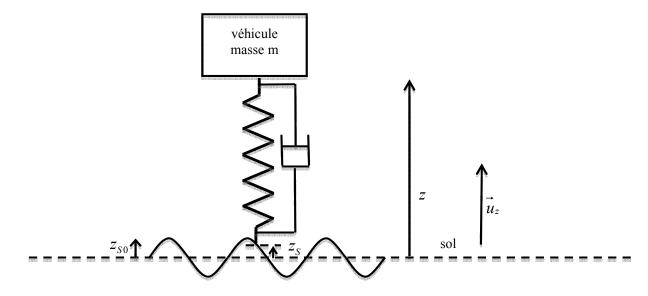


Figure 4: régime forcé

La suspension comporte un dispositif d'amortissement visqueux ; son action sur le véhicule est modélisée par la force $\vec{F} = -h\vec{v}$ où \vec{v} représente la vitesse relative des deux extrémités de l'amortisseur et h le coefficient de frottement fluide.

On a donc $\vec{F} = -h(\dot{z} - \dot{z}_s)\vec{u}_z$.

- 13 Déterminer l'expression de la force exercée par le ressort de la suspension sur la masse m en fonction de k, z, z_s , l_0 et du vecteur unitaire \vec{u}_z .
- 14 En appliquant la relation fondamentale de la dynamique, déterminer l'équation différentielle reliant les fonctions z(t) et $z_s(t)$ et leurs dérivées temporelles ainsi que les paramètres h, m, k et z_e (où z_e représente la longueur du ressort à l'équilibre statique calculée à la question 2).

Voulant étudier les oscillations de la masse m autour de sa position d'équilibre z_e , on posera $z'=z-z_e$.

15 – Montrer que l'équation différentielle précédente peut se mettre sous la forme : $m\ddot{z}'+h\dot{z}'+kz'=Y(t)$.

Déterminer l'expression de Y(t) en fonction de z_s , \dot{z}_s , k et h.

Dans la suite de cette partie, on utilisera les notations complexes rappelées au début de l'énoncé.

16 - Pour simplifier les notations, on posera :

$$\omega_0^2 = \frac{k}{m}$$
 et $2\lambda = \frac{h}{m}$.

Déterminer l'expression de la réponse complexe $\frac{\underline{Z'}}{Z_s}$ de la suspension en fonction de ω , ω_0 et λ .

Montrer que le module de la réponse complexe est donné par l'expression :

$$H = \left| \frac{Z_{m}'}{Z_{sm}} \right| = \sqrt{\frac{\omega_0^4 + 4\lambda^2 \omega^2}{\left(\omega_0^2 - \omega^2\right)^2 + 4\lambda^2 \omega^2}}.$$

Par la suite, les candidats pourront utiliser l'expression précédente du module de la réponse complexe, même s'ils ne sont pas parvenus à la démontrer.

17 – Etude de la réponse complexe.

17.1 – Déterminer la valeur vers laquelle tend H lorsque la pulsation ω tend vers 0. Décrire dans ce cas le comportement de la masse m par rapport au sol.

17.2 – Déterminer la valeur vers laquelle tend H lorsque la pulsation ω tend vers l'infini. Décrire dans ce cas le comportement de la masse m par rapport au sol.

17.3 – On considère pour simplifier :

- que la valeur maximale de H est atteinte pour une pulsation ω_r non nulle telle que le dénominateur de l'expression précédente est minimal ;
- que l'on se trouve dans le cas où $\omega_0^2 > 2\lambda^2$.

Déterminer l'expression de ω_r en fonction de ω_0 et λ . A quoi correspond physiquement le cas où la pulsation est égale à ω_r ?

Remarque : en réalité, la détermination de la pulsation qui correspond à la valeur maximale de H aurait dû prendre en compte le fait que le numérateur de H dépend également de la pulsation. Le calcul complet conduit à des résultats sensiblement équivalents.

18 – Donner l'allure de la courbe représentant $H = \left| \frac{\underline{Z'}}{\underline{Z_s}} \right|$ en fonction de ω . On fera apparaître les valeurs particulières déterminées dans la question précédente.

II Filtre ADSL

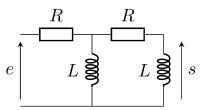
Les lignes téléphoniques transportent à la fois les signaux téléphoniques vocaux (fréquences de 0 à $4\,\mathrm{kHz}$), et les signaux informatiques pour l'ADSL par exemple (fréquences de $25\,\mathrm{kHz}$ à $2\,\mathrm{MHz}$).

19 - Quel type de filtre faut-il utiliser pour récupérer seulement les signaux téléphoniques? Les signaux informatiques?

Proposer un bon choix de fréquence de coupure f_0 .

Un filtre ADSL sert à répartir les signaux entre le téléphone et la box ADSL. Il peut se décrire par le circuit ci-contre.

L'entrée e est délivrée par la prise téléphonique murale.



20 - Indiquer, en justifiant, de quel type de filtre il s'agit.

La sortie s doit-elle correspondre au signal fourni à la box internet ou au téléphone?

Afin de trouver l'expression de la fonction de transfert $\underline{H} = \frac{\underline{s}}{\underline{e}}$ on procède en plusieurs étapes. Notons \underline{u} la tension aux bornes de la bobine de gauche. On travaille avec les impédances complexes.

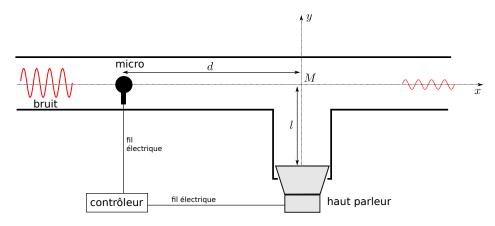
- 21 a Donner l'expression de \underline{s} en fonction de \underline{u} , L, R et ω .
 - **b** D'autre part, donner l'expression de \underline{u} en fonction de \underline{e} , R, et d'une impédance équivalente \underline{Z} bien choisie (et dont on donnera l'expression).

On peut alors montrer en utilisant les deux questions précédentes (mais on ne le fera pas) que la fonction de transfert a l'expression suivante :

$$\underline{H} = \frac{-x^2}{1 + 3jx - x^2}$$
, avec $x = \frac{\omega}{\omega_0} = \frac{L\omega}{R}$.

- 22 a Donner un équivalent de \underline{H} à hautes et basses fréquences.
 - **b** Donner l'équation des asymptotes pour le gain en décibel et pour la phase.
 - c Tracer l'allure du diagramme de Bode en gain et en phase.
- 23 Donner l'expression du module de H en fonction de ω . Même question pour l'argument de H.

III Réduction active de bruit



On considère une conduite dans laquelle est généré un bruit. Le bruit peut provenir d'un système de ventilation (conduite VMC) ou d'une pompe. Afin d'éliminer ce bruit, on utilise un système de réduction active, schématisé sur la figure cicontre.

Le bruit est capté par un micro, qui envoie un signal électrique vers un contrôleur. Ce dernier traite en temps réel l'information venant du micro, afin de piloter un haut parleur qui émet une onde qui va interférer destructivement au point M avec le bruit incident.

On prendra une célérité du son $c = 340 \,\text{m/s}$, et des distances $d = 1,0 \,\text{m}$ et $l = 10 \,\text{cm}$. On suppose que le temps de propagation des signaux électriques dans les câbles est instantané.

- 24 Le contrôleur reçoit le signal du micro à un instant t₁. À quel instant t₂ doit-il envoyer un signal vers le haut-parleur, afin que le bruit et le son du haut-parleur se rencontrent en M?
 On donnera l'expression de t₂, et la valeur numérique de t₂-t₁ (qui correspond au délai de traitement par le microcontrôleur).
- 25 On suppose que le bruit est une onde sinusoïdale progressive selon l'axe x, de fréquence f.

 Quelle doit être la fréquence du son émis par le haut-parleur pour qu'il y ait des interférences en M?
- **26 -** On note l'onde arrivant sur le micro comme $s_i(x,t) = s_0 \cos(\omega t kx + \varphi_i)$. On prend l'origine x = 0 au niveau du micro.
 - Donner alors l'expression de cette onde lorsqu'elle arrive au point M.
- 27 L'onde émise par le haut-parleur est de même amplitude et de même pulsation que $s_i(x,t)$. En revanche, elle se déplace selon les y croissants, et on note φ_{hp} sa phase à l'origine. On prend y=0 au niveau du haut-parleur.
 - Donner l'expression de cette onde $s_{hp}(y,t)$ émise par le haut-parleur.
- **28** Donner l'expression de l'onde $s_{hp}(y,t)$ au point M.

DS 4

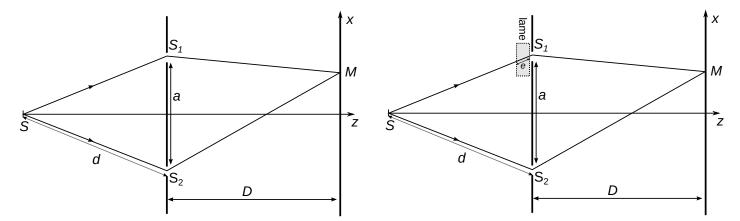
- **29 -** Quelle est la condition sur le déphasage des deux ondes au point M pour que les interférences soient destructives?
- **30 -** En déduire l'expression du déphasage $\Delta \varphi = \varphi_{hp} \varphi_i$ que doit imposer le haut-parleur pour que ce soit le cas. On l'exprimera d'abord en fonction de k, l et d, puis en fonction de f, c, l et d.

8 / 9

Si le bruit est quelconque, il faut appliquer le déphasage ci-dessus à chaque composante du spectre.

IV Mesure de l'épaisseur d'une lame à l'aide du dispositif des trous d'Young _____

On considère un dispositif des trous d'Young, éclairé par une source quasi-monochromatique de longueur d'onde dans le vide $\lambda=500\,\mathrm{nm}$. On note $a=0.5\,\mathrm{mm}$ la distance entre les deux trous, $D=2.0\,\mathrm{m}$ la distance écran-trous.



On donne la formule de Fresnel : $I(M) = 2I_0 (1 + \cos \Delta \varphi)$ avec $\Delta \varphi = \frac{2\pi \delta(M)}{\lambda}$ la différence de phase au point M, et $\delta(M)$ la différence de chemin optique en M.

- 31 On se place dans le cas de la figure de gauche. Démontrer l'expression de la différence de chemin optique $\delta(M)$ au point M sur l'écran, en fonction de x, a et D. On supposera a et x très petits devant D et on utilisera l'approximation $\sqrt{1+\varepsilon} \simeq 1+\varepsilon/2$ si $\varepsilon \ll 1$.
- $\bf 32$ Toujours dans le cas de gauche, donner l'expression de l'intensité lumineuse (formule de Fresnel) notamment en fonction de x.
- 33 Donner ensuite l'expression de l'interfrange i (période spatiale de la figure).
- 34 La frange centrale est la frange brillante qui correspond à une différence de chemin optique nulle. En déduire sa position x sur l'écran.

On place maintenant une lame de verre d'indice n = 1,4 et d'épaisseur e devant S_1 . On suppose que les rayons la traversant le font quasiment sans être inclinés : ils parcourent dans la lame une distance e (cf. schéma de droite).

- **35 -** L'expression de $(S_1M) (S_2M)$ a-t-elle changé par rapport au cas précédent?
- **36** En revanche, cette fois $(SS_1) (SS_2) \neq 0$. Exprimer cette différence en fonction de n et de e.

9 / 9

- 37 En déduire l'expression complète de la différence de chemin optique.
 Quelle est la nouvelle position de la frange centrale?
 Donner l'expression de son déplacement en terme de nombre d'interfranges.
- 38 Expérimentalement, on mesure un déplacement de 10 interfranges. Que vaut e?

DS 4