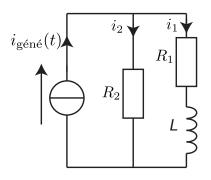

Étude des systèmes linéaires Chapitre 1

DM - Charge d'une bobine en dérivation

Le circuit que l'on considère est soumis à un échelon de courant délivré par un générateur idéal de courant tel que :

$$\begin{cases} i_{\text{géné}} = 0 \text{ pour } t < 0 \\ i_{\text{géné}} = I_0 \text{ pour } t > 0 \end{cases}$$

- **1** Que valent les courants i_1 et i_2 pour t < 0? En déduire que $i_1(0^+) = 0$. Que vaut $i_2(0^+)$?
- **2 -** Montrer que pour $t \geq 0$ l'intensité $i_1(t)$ obéit à l'équation $\frac{\mathrm{d}i_1}{\mathrm{d}t} + \frac{i_1}{\tau} = \frac{R_2I_0}{L}$ avec τ un paramètre dont on précisera l'expression en fonction de L, de R_1 et R_2 .


 Quelle est l'unité de τ ?
- 3 En déduire l'expression de l'intensité $i_1(t)$ qui traverse la bobine.
- 4 Tracer l'allure de la courbe de $i_1(t)$. On fera apparaître les valeurs remarquables. Quel est le paramètre qui donne l'ordre de grandeur de la durée du régime transitoire?

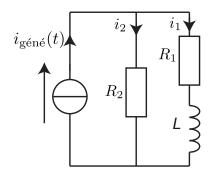
Étude des systèmes linéaires Chapitre 1

DM – Charge d'une bobine en dérivation

Le circuit que l'on considère est soumis à un échelon de courant délivré par un générateur idéal de courant tel que :

$$\begin{cases} i_{\text{géné}} = 0 \text{ pour } t < 0 \\ i_{\text{géné}} = I_0 \text{ pour } t > 0 \end{cases}$$

- **1** Que valent les courants i_1 et i_2 pour t < 0? En déduire que $i_1(0^+) = 0$. Que vaut $i_2(0^+)$?
- **2 -** Montrer que pour $t \geq 0$ l'intensité $i_1(t)$ obéit à l'équation $\frac{\mathrm{d}i_1}{\mathrm{d}t} + \frac{i_1}{\tau} = \frac{R_2I_0}{L}$ avec τ un paramètre dont on précisera l'expression en fonction de L, de R_1 et R_2 .


 Quelle est l'unité de τ ?
- 3 En déduire l'expression de l'intensité $i_1(t)$ qui traverse la bobine.
- 4 Tracer l'allure de la courbe de $i_1(t)$. On fera apparaître les valeurs remarquables. Quel est le paramètre qui donne l'ordre de grandeur de la durée du régime transitoire?

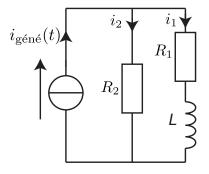
Étude des systèmes linéaires Chapitre 1

DM - Charge d'une bobine en dérivation

Le circuit que l'on considère est soumis à un échelon de courant délivré par un générateur idéal de courant tel que :

$$\begin{cases} i_{\text{géné}} = 0 \text{ pour } t < 0 \\ i_{\text{géné}} = I_0 \text{ pour } t > 0 \end{cases}$$

- **1** Que valent les courants i_1 et i_2 pour t < 0? En déduire que $i_1(0^+) = 0$. Que vaut $i_2(0^+)$?
- **2 -** Montrer que pour $t \geq 0$ l'intensité $i_1(t)$ obéit à l'équation $\frac{\mathrm{d}i_1}{\mathrm{d}t} + \frac{i_1}{\tau} = \frac{R_2I_0}{L}$ avec τ un paramètre dont on précisera l'expression en fonction de L, de R_1 et R_2 .


 Quelle est l'unité de τ ?
- 3 En déduire l'expression de l'intensité $i_1(t)$ qui traverse la bobine.
- 4 Tracer l'allure de la courbe de $i_1(t)$. On fera apparaître les valeurs remarquables. Quel est le paramètre qui donne l'ordre de grandeur de la durée du régime transitoire?

Étude des systèmes linéaires Chapitre 1

DM - Charge d'une bobine en dérivation

Le circuit que l'on considère est soumis à un échelon de courant délivré par un générateur idéal de courant tel que :

$$\begin{cases} i_{\text{géné}} = 0 \text{ pour } t < 0 \\ i_{\text{géné}} = I_0 \text{ pour } t > 0 \end{cases}$$

- **1** Que valent les courants i_1 et i_2 pour t < 0? En déduire que $i_1(0^+) = 0$. Que vaut $i_2(0^+)$?
- **2 -** Montrer que pour $t \geq 0$ l'intensité $i_1(t)$ obéit à l'équation $\frac{\mathrm{d}i_1}{\mathrm{d}t} + \frac{i_1}{\tau} = \frac{R_2I_0}{L}$ avec τ un paramètre dont on précisera l'expression en fonction de L, de R_1 et R_2 .

 Quelle est l'unité de τ ?
- ${\bf 3}$ En déduire l'expression de l'intensité $i_1(t)$ qui traverse la bobine.
- 4 Tracer l'allure de la courbe de $i_1(t)$. On fera apparaître les valeurs remarquables. Quel est le paramètre qui donne l'ordre de grandeur de la durée du régime transitoire?