Partie VII : Transformations de la matière

Chapitre 5

Réactions d'oxydoréduction : complément

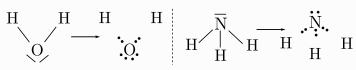
Lien entre n.o. et structure électronique

(cette partie n'est pas très importante et n'est pas vraiment à retenir)

Dans le cours nous avons donné les règles pratiques pour trouver le n.o. Mais d'où proviennent ces règles?

Le n.o. est en fait lié à la structure électronique de l'atome. Seuls les électrons de valence interviennent.

Rappels sur les électrons de valence, avec deux exemples :


- oxygène : O, $\underbrace{1s^2}_{\text{cœur}} \underbrace{2s^22p^4}_{\text{valence}}$, soit 6 électrons de valence ;
- hydrogène : H, $\underbrace{1s^1}_{\text{valence}}$, soit 1 électron de valence.

Autre rappel : dans un édifice polyatomique, les liaisons sont modélisées par des doublets liants d'électrons, représentés sur le schéma de Lewis.

Définition du n.o.

Pour déterminer les n.o., on attribue les deux électrons de chaque doublet liant à l'atome le plus électronégatif. On attribue les doublets non liants à l'atome qui les porte.

Puis on compte le nombre d'électrons attribués à un atome donné. On fait la différence entre le nombre d'électrons de valence de l'atome et le nombre d'électrons attribués : ceci donne le n.o.

Exemples:

▷ H₂O : c'est O qui est le plus électronégatif, et donc à qui on attribue les électrons des doublets.

Ainsi O possède 8 électrons, or il a 6 électrons de valence, donc son n.o. est 6-8=-2.

Et H (celui de gauche ou de droite) possède 0 électron, or il a un électron de valence, donc son n.o. est 1-0=+1.

▷ NH₃ : c'est N qui est le plus électronégatif, et donc à qui on attribue les électrons des doublets.

Ainsi N possède 8 électrons, or il a 5 électrons de valence, donc son n.o. est 5-8=-3.

Et H (l'un des trois) possède 0 électron, or il a un électron de valence, donc son n.o. est 1-0=+1.

Comme H est en général peu électronégatif par rapport aux autres éléments, on ne luis attribue pas les électrons de son unique doublet liant, et il a toujours un n.o. de 1-0=+1. De même, comme O est souvent plus électronégatif que les autres éléments, on lui attribue tous les électrons des quatre doublets qui l'entourent (règle de l'octet) et il a alors un n.o. de 6-8=-2. Ceci justifie les règles énoncées ci-dessus.

Lorsqu'il y a des liaisons entre deux mêmes atomes, alors on attribue un électron à chacun. Ceci permet d'expliquer les exceptions :

$$\mathrm{H}-\mathrm{H} \longrightarrow \mathrm{H} \cdot \cdot \cdot \mathrm{H} \quad \bigcirc = \bigcirc \longrightarrow \bigcirc : : \bigcirc : \quad \mathrm{H}-\overline{\mathrm{O}}-\overline{\mathrm{O}}-\mathrm{H} \longrightarrow \mathrm{H} \quad \cdot \cdot \bigcirc \cdot \cdot \stackrel{\circ}{\mathrm{O}} \cdot \quad \mathrm{H}$$

- \triangleright Dans H_2 ou O_2 , chaque élément a bien le même nombre d'électrons que son nombre de valence, d'où des n.o. nuls.
- \triangleright Dans H_2O_2 , on constate que chaque O possède 7 électrons, d'où un n.o. de 6-7=-1.

Enfin, la structure électronique permet de connaître les n.o. maximum et minimum d'un élément. Exemple :

 $\,\rhd\,$ Carbone C : 1s² 2s²2p², soit 4 électrons de valence.

Si on ne lui attribue aucun électrons, alors son n.o. maximal est 4-0=+4 (ex. : CO_2).

Comme il respecte la règle de l'octet il est entouré de 4 doublets, et si on lui attribue tous les électrons (soit 8), alors son n.o. minimal est 4-8=-4 (ex. : CH_4).