Champ magnétique et induction Chapitre 1

Correction - TD - Champ magnétique : propriétés et actions

I Rail gun _____

 $[\bullet \circ \circ]$

- 1 On choisit un axe Ox de gauche à droite.
 - a On exprime $\vec{F} = I\overrightarrow{BA} \wedge \vec{B_0} = IlB_0\vec{e_x}$ (axe x orienté vers la droite sur la figure). Le travail d'une force constante (c'est le cas ici) sur une distance d est

$$W(\vec{F}) = \vec{F} \cdot \vec{d} = Fd = IlB_0d.$$

- **b** On utilise le théorème de l'énergie cinétique : $E_c(f) E_c(i) = W(\vec{F})$, avec
 - $E_c(f) = \frac{1}{2} m v_f^2$ et $v_f = 2.4 \times 10^3 \,\mathrm{m/s},$
 - $E_c(i) = 0$ (immobile au départ),
 - $W(\vec{F}) = F \times d = IlB_0d$.

On a donc

$$\frac{1}{2}mv_f^2 = IlB_0d$$
, d'où $B_0 = \frac{mv_f^2}{2Ild} = 5.76 \times 10^3 \,\mathrm{T}$.

Remarque : Il est aussi possible de passer par un PFD, que l'on intègre pour avoir v(t) puis x(t). Mais c'est plus long.

 ${f c}$ - Ceci est beaucoup trop élevé pour un champ créé de façon permanente.

Remarque : Le courant I est supposé imposé par le générateur et est donc constant. La force de Laplace est donc constante et les phénomènes d'induction (du prochain chapitre!) n'interviennent pas.

2 - L'idée est cette fois de se servir du champ magnétique produit par les rails eux-même.

À une distance r d'un fil, le champ est donné par $B = \frac{\mu_0 I}{2\pi r}$. Pour r = 10 cm, on a B = 2 T.

Si on reprend l'expression précédente, la vitesse finale est alors $v_f = \sqrt{\frac{2IlB_0d}{m}} = 1.4 \times 10^3 \,\text{m/s}$, ce qui est bien du bon ordre de grandeur.

II Méthode de Gauss de mesure du champ magnétique _____ [• ∘ ∘

1 - Le champ \vec{B} exerce un couple $\vec{\Gamma} = \vec{M} \wedge \vec{B} = -BM \sin \theta \, \vec{e}_z$ sur le barreau, soit en projetant sur l'axe Oz:

$$\Gamma = -BM\sin\theta.$$

Le théorème du moment cinétique donne donc :

$$J\ddot{\theta} = -MB\sin\theta$$
,

soit pour des oscillations de faible amplitude une pulsation

$$\omega_0 = \sqrt{\frac{BM}{J}}.$$

 ${\bf 2}$ - L'aiguille \vec{m} est à l'équilibre, donc la somme des couples agissant sur elle est nulle.

On a d'une part celui exercé par le champ \vec{B} : $\Gamma = -mB\sin\theta = mB\sin|\theta|$ ($\theta < 0$ sur le schéma). Et celui exercé par l'action de \vec{M} donnée dans l'énoncé.

D'où:

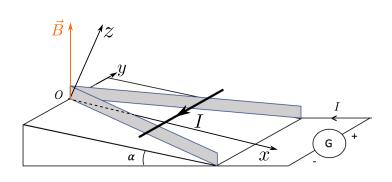
$$mB\sin|\theta| - \frac{\mu_0 mM}{2\pi r^3} = 0$$
, soit $B\sin|\theta| = \frac{\mu_0 M}{2\pi r^3}$.

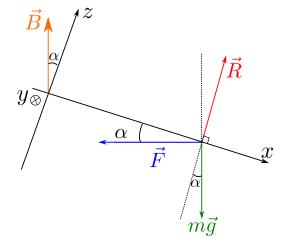
3 - Avec les résultats des deux étapes on peut éliminer le moment magnétique M inconnue, et obtenir :

$$B = \omega_0 \sqrt{\frac{\mu_0 J}{2\pi r^3 \sin|\theta|}},$$

d'où la mesure de B par des mesures mécaniques seulement

Rail de Laplace modifiés Ш





- 1 Le champ magnétique doit être vers le haut pour que $I\vec{L} \wedge \vec{B}$ soit dirigé vers le point O et fasse monter la tige.
- 2 \star Il faut d'abord exprimer \vec{B} et \vec{L} dans le repère Oxyz :
 - $\vec{L} = -l(x) \vec{e}_y.$
 - $-\vec{B} = B\cos\alpha\vec{e}_z B\sin\alpha\vec{e}_x.$

On a donc
$$\vec{F} = I\vec{L} \wedge \vec{B} = -IlB(\cos\alpha \vec{e}_x + \sin\alpha \vec{e}_z).$$

Sur le schéma ceci donne un vecteur horizontal dirigé vers la gauche, donc vers le point O.

 \star Ensuite, la longueur de la portion de la tige qui conduit le courant est l(x) et dépend de la position x.

On voit que $\tan \frac{\beta}{2} = \frac{l/2}{x}$, donc $\left[l = 2x \tan \frac{\beta}{2}\right]$. D'où finalement : $\vec{F} = -2IBx \tan \frac{\beta}{2} (\cos \alpha \, \vec{e}_x + \sin \alpha \, \vec{e}_z).$

$$\vec{F} = -2IBx \tan \frac{\beta}{2} (\cos \alpha \, \vec{e}_x + \sin \alpha \, \vec{e}_z).$$

3 - À l'équilibre, la somme des trois forces s'exerçant sur la tige est nulle (poids, force de Laplace et réaction $du rail) : \vec{F} + \vec{R} + m\vec{g} = \vec{0}.$

Comme on ne connaît par \vec{R} , on projette sur \vec{e}_x . $\vec{R} \cdot \vec{e}_x = 0$ car il n'y a pas de frottements.

Or $\vec{g} = -g \cos \alpha \, \vec{e}_z + g \sin \alpha \, \vec{e}_x$, donc sur $\vec{g} \cdot \vec{e}_x = g \sin \alpha$, et on obtient à l'équilibre :

$$-2IBx \tan \frac{\beta}{2} \cos \alpha + 0 + mg \sin \alpha = 0$$
, d'où $x_{\text{\'eq}} = \frac{mg \tan \alpha}{2IB \tan(\beta/2)}$.

IV Équilibre d'un aimant _

Considérons un axe Δ sortant de la feuille $\odot.$

- Le poids a pour moment par rapport à cet axe $\mathcal{M}_{\Delta}(\vec{P}) = -d \times mg$ (bras de levier OG = d mais rotation en sens négatif).
- Le couple magnétique s'exprime lui par $\Gamma_{\Delta} = (\vec{\mathcal{M}} \wedge \vec{B}) \cdot \vec{u}_{\Delta} = +\mathcal{M}B$ à l'équilibre où $\vec{\mathcal{M}}$ et \vec{B} sont orthogonaux.

À l'équilibre,

$$\Gamma_{\Delta} + \mathcal{M}_{\Delta}(\vec{P}) = 0 \quad \text{d'où} \quad d = \frac{\mathcal{M}B}{mg}.$$
 (1)