Thermodynamique Chapitre 1

TD – Décrire l'état d'un système thermodynamique

Remarque : exercice avec \star : exercice particulièrement important, à maîtriser en priorité (de même que les exemples de questions de cours des "ce qu'il faut savoir faire") $|[\bullet \circ \circ]|$: difficulté des exercices

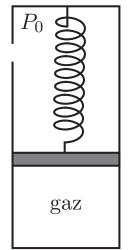
l Pression des pneus _____

La pression préconisée sur les roues avant d'une voiture est de 2,2 bar (attention, cela dépend du modèle). Cette indication concerne en réalité ce qu'on appelle la pression relative $p_{\rm rel}$, la pression absolue p étant donnée par $p=p_{\rm rel}+p_{\rm atm}$ avec $p_{\rm atm}\simeq 1,0$ bar.

J'ai réglé la pression des pneus de ma voiture un jour froid cet hiver, par une température extérieure de -5 °C.

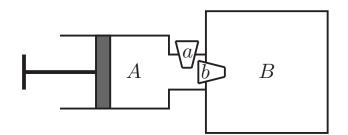
1 - En supposant que le volume des pneus varie de façon négligeable et qu'il n'y a aucune fuite d'air possible, que vaudra la pression (absolue) des pneus un jour chaud cet été, par une température extérieure de 30 °C?

Et la pression relative qu'indiquerait un manomètre?


Commentaire?

II Équilibre d'un gaz _____

Considérons le système représenté sur la figure suivante à l'équilibre thermodynamique. Le piston est libre de se déplacer sans frottement. La masse du piston m_p est de $4,0\,\mathrm{kg}$ et sa section S de $35\,\mathrm{cm}^2$. De plus, le ressort de raideur $k=6,0\times10^3\,\mathrm{N}\cdot\mathrm{m}^{-1}$ est comprimé de $b=1,0\,\mathrm{cm}$.


1 - Sachant que la pression atmosphérique ambiante P_0 est de 0,95 bar, déterminer la pression au sein du gaz.

III Pompe à vélo

On utilise une pompe dont le corps A a un volume maximal $V_P = 200 \,\mathrm{mL}$ pour gonfler d'air une chambre à air B supposée de volume constant $V_0 = 5 \,\mathrm{L}$. Les soupapes (a) et (b) ne laissent passer l'air que dans un sens.

Lors de chaque coup de pompe, le piston effectue un aller-retour complet faisant varier A d'un volume nul à un volume V_P . On suppose les évolutions isothermes. Au début de l'opération, la température de l'air est $T_0 = 298 \,\mathrm{K}$ et sa pression $P_0 = 1,0 \,\mathrm{bar}$ dans tous les compartiments et à l'extérieur. $R = 8,31 \,\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1}$.

- 1 Préciser le sens dans lequel les soupapes laissent passer l'air.
- 2 Calculer la pression de l'air P_1 à l'intérieur de B au bout du premier aller-retour.
- 3 Établir la relation entre P_k , P_0 , V_P , V_0 , et k. (P_k désigne la pression dans la chambre à air après k coups de pompe). Calculer le nombre de coups de pompe nécessaires à gonfler jusqu'à $P_f = 5$ bar.