
Mécanique
Chapitre 3

Énergie en mécanique

 
 

 

1 - Énergie cinétique

I   Énergie cinétique, puissance et travail d'une force

II   Théorème de l'énergie cinétique

a/ Instantané (th. de la puissance cinétique)
 
 
b/ Forme intégrale (th. de l'énergie cinétique)

 III   Force conservative et énergie potentielle

IV   Théorème de l'énergie mécanique

1 - Définition

2 - Puissance d'une force

3 - Travail d'une force

2 - Exemples d'énergies potentielles

a/ élémentaire :
 
b/ entre A et B :

 

>0 si force motrice, <0 si résistante.

reliés par le TEC

           independant du chemin  de A à B

     il existe       telle que 

a/ Définition : 
 
b/ Théorème : 

Élastique
(ressort)

z
Pesanteur

Force de
gravitation

Force 
électrostatique

cf chapitre 4

cf chapitre 6

Forces conservatives : il existe

Forces non conservatives : 
il n'existe pas d'énergie 
potentielle       associée

- Frottements avec l'air

- Frottements avec un support 

Forces qui ne 
travaillent pas (        )
- réaction normale
- tension d'un fil
n'interviennent pas
dans      ni dans les 
théorèmes (TEM, TEC)

Ce qu’il faut connaître
(cours : I)

I1 Quelle est la définition de l’énergie cinétique d’une masse m de vitesse ~v ?

I2 Quelle est la définition de la puissance d’une force ?

I3 Quelle est la définition du travail élémentaire d’une force ? (définition en fonction de la puissance P, et définition en
fonction du déplacement élémentaire

−→
dl)

I4 Quelle est la définition du travail d’une force entre deux points A et B ?

(cours : II)

I5 Comment s’énonce le théorème de l’énergie cinétique ? (donner la forme intégrale et la forme instantanée)

(cours : III)

I6 Quelles sont les deux définitions d’une force conservative ?

Donner un exemple de force conservative, et un exemple de force non conservative.

I7 Quelle est l’expression de l’énergie potentielle de pesanteur ?

Et celle de l’énergie potentielle élastique (force exercée par un ressort) ?
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I8 Comment s’exprime la force ~F en fonction de l’énergie potentielle Ep(x) associée ?

(cours : IV)

I9 Comment s’énonce le théorème de l’énergie mécanique ?

Dans quels cas l’énergie mécanique d’un point matériel est-elle conservée au cours du mouvement ?

Ce qu’il faut savoir faire
(cours : I)

I10 Identifier si une force est motrice, résistante ou si elle ne travaille pas.

I11 Calculer le travail d’une force sur un déplacement. → EC1, EC1bis

(cours : II)

I12 Appliquer le théorème de l’énergie cinétique ou de la puissance cinétique. → EC2, TD I

(cours : III)

I13 Distinguer force conservative et force non conservative.

(cours : IV)

I14 Utiliser le théorème de l’énergie mécanique. Reconnaître les cas de conservation de l’énergie mécanique. Utiliser les
conditions initiales pour exprimer Em. → EC3, EC4, TD I, II, III, IV

Exercices de cours

Exercice C1 – Calcul de travail et de puissance : ascension d’un cycliste

Un cycliste de masse m = 80 kg (vélo et équipement inclus) effectue l’ascension du Ballon d’Alsace (dénivelé de 700m).

1 - Calculer le travail W du poids lors de cette ascension.

2 - Le cycliste roule en ligne droite à 15 km/h sur une pente montante de 10% (donc avec un angle par rapport à
l’horizontale de α = arctan(10/100)). Que vaut la puissance du poids ? Commenter son signe.

Comparer avec la puissance dégagée par le corps humain au repos qui est d’environ 100W.

Correction

1 - Soit A le point de départ et B celui d’arrivée. Soit z un axe orienté vers le haut et h la hauteur de l’ascension.

Le poids m~g est une force constante, donc :

WAB(~P ) = m~g ·
−−→
AB.

Or ~g = g~ez. Et ~ez ·
−−→
AB est la composante selon z du vecteur

−−→
AB, donc ~ez ·

−−→
AB = h. D’où

WAB(~P ) = mg~ez ·
−−→
AB = mgh = 5,6× 105 J.

2 - Faire un schéma. Puissance du poids :

P = ~P · ~v = ‖~P‖ ‖~v‖ cos(~P ,~v) = mgv cos(α+ π/2) = −mgv sinα.

L’AN donne P = −330W.

Négatif car dans une montée, le poids est résistant. Le cycliste doit donc fournir cette puissance pour avancer. C’est
donc environ trois fois la puissance du corps humain au repos.
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Exercice C1bis – Calcul de travail : frottements de l’air
Une voiture va d’un point A à un point B distants de d = 10 km, en
roulant avec une vitesse constante. On modélise les frottements dus à
l’air par une force ~F = −λ~v (avec λ qui dépend de v, constant ici).

1 - Pour chacune des trajectoires ci-contre, donner l’expression du tra-
vail de la force de frottement lors de ce déplacement.

A                                         Bcas 1

cas 2

Correction

1 - WAB(~F ) =

ˆ B

A

~F ·
−→
dl =

ˆ B

A

−λ~v ·
−→
dl.

Or ~v et
−→
dl sont toujours colinéaires, donc ~v ·

−→
dl = v dl.

Comme v est constante par hypothèse, on peut la sortir de l’intégrale : WAB(~F ) = −λv
ˆ B

A

dl.

Or
´ B
A

dl = LAB , longueur du parcours de A à B (cf “notions mathématiques”). On a donc le résultat général :

WAB(~F ) = −λvLAB .

b Cas 1 : LAB = d donc WAB(~F ) = −λvd.

b Cas 2 : LAB =
1

2
2π
d

2
=
πd

2
donc WAB(~F ) = −λvπd

2
.

Exercice C2 – Application du théorème de l’énergie cinétique : glissade sans frottement

On considère un objet qui glisse sur un plan incliné d’un angle α par rapport à l’horizontale. On le modélise par un point
matériel M de masse m glissant sans frottements. L’objet est lâché sans vitesse initiale, et on choisit le repère tel qu’à
tout instant, ~v = v(t)~ex (cf schéma). Le référentiel du plan est supposé galiléen.

1 - Faire un bilan des forces et donner l’expression de la puissance de chacune
des forces, notamment en fonction de m, g, v et α.

2 - En déduire une équation différentielle suivie par la composante v de la
vitesse.

x

y

g
M

Correction

1 - Faire un schéma. Bilan des forces et calculs des puissances :

– Réaction normale du support ~N . On a P( ~N) = ~N · ~v = 0 car ~N ⊥ ~v.

– Poids ~P . On a P(~P ) = ~P · ~v = ‖~P‖ ‖~v‖ cos(~P ,~v) = mgv cos(π/2− α) = mgv sinα.

(S’il y avait eu des frottements ~T , leur puissance ne serait pas nulle)

2 - Théorème de la puissance cinétique :
dEc
dt

= P( ~N) + P(~P )

⇒ d
dt

(
1

2
mv2

)
= mgv sinα

⇒ mvv̇ = mgv sinα

⇒ v̇ = g sinα
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Exercice C3 – Application du TEM sur le cas de la chute libre

On considère une masse m en chute libre sans vitesse initiale dans un champ de pesanteur ~g uniforme. On néglige tout
frottement et le référentiel d’étude est galiléen. On utilise un axe z orienté vers le bas, avec z = 0 initialement.

1 - Donner l’expression de l’énergie potentielle de pesanteur de la masse en fonction notamment de z.

2 - En appliquant le théorème de l’énergie mécanique, exprimer la vitesse de la masse après une chute d’une hauteur h.

Correction

1 - Ep = −mgz.

2 - Bilan des forces : le poids. Toutes les forces sont conservatives, donc Em = cst.
Donc en notant A le point de départ et B le point d’arrivée, on a Em(A) = Em(B).
Or Em(A) = 0− 0 = 0 (car la vitesse de départ est nulle, et car zA = 0 par choix de l’origine de l’axe),

et Em(B) =
1

2
mv2B −mgh (car zB = h).

Ainsi, Em(A) = Em(B) donne 0 =
1

2
mv2B −mgh et donc vB =

√
2gh.

Exercice C4 – Application du TEM sur le cas du pendule simple

On considère un pendule dont toute la masse m est localisée au point M . Le fil reliant O à M est supposé inextensible et
de masse négligeable, on note L sa longueur. On néglige tout frottement. On se place dans le référentiel terrestre supposé
galiléen. Le champ de pesanteur est ~g = g~ez avec z axe vers le bas et g ' 10 m/s2 constante.

1 - Donner l’expression de l’énergie cinétique de la masse m en fonction des
coordonnées polaires du point M .

2 - Faire de même pour l’énergie potentielle de pesanteur du point M .

3 - Que peut-on dire du travail de la force de tension du fil ?

4 - En appliquant le théorème de l’énergie mécanique, trouver une intégrale
première du mouvement, c’est-à-dire une quantité comprenant θ(t) et θ̇(t)
qui reste constante tout au long du mouvement.

5 - En déduire l’équation du mouvement, qui porte sur θ̈ et θ.
Correction

1 - En polaires on a
−−→
OM = L~er, et en dérivant : ~v = Lθ̇~eθ.

D’où Ec =
1

2
mv2 =

1

2
m(Lθ̇)2 =

1

2
mL2θ̇2.

2 - Avec un schéma on voit que z = L cos θ.
L’énergie potentielle de pesanteur est donc Ep = −mgz = −mgL cos θ.

3 - On a toujours ~v ⊥ ~T donc la tension du fil a une puissance et un travail nuls. Elle n’intervient pas dans les bilans
énergétiques.

4 - Toutes les forces sont conservatives (ou ne travaillent pas), donc Em = cst.

On a donc : Em = Ec + Ep =
1

2
mL2θ̇2 −mgL cos θ = cst.

5 - On dérive :
dEm
dt

= 0

⇒ 1

2
mL2 dθ̇2

dt
−mgLd cos θ

dt
= 0

⇒ 1

2
mL2 2θ̈θ̇ +mgL θ̇ sin θ = 0

⇒ L2θ̈ + gL sin θ = 0

⇒ θ̈ +
g

L
sin θ = 0.

On retrouve bien la même équation qu’au chapitre précédent.

Mécanique chapitre 3 4 / 13 Raoul Follereau | PTSI



Notions mathématiques

• Produit scalaire de deux vecteurs ~u et ~v :

~u · ~v = ‖~u‖ ‖~v‖ cosα.

• Intégrale d’une longueur élémentaire dl le long d’une
courbe AB : ˆ B

A

dl = LAB

où LAB est la longueur de la courbe de A à B.

• Intégrale du déplacement élémentaire
−→
dl le long

d’une courbe AB :
ˆ B

A

−→
dl =

−−→
AB

Cours

I – Énergie cinétique, puissance et travail d’une force

1 – Énergie cinétique

Définition : énergie cinétique

Soit un point matériel M de masse m et de vitesse v (en norme).
Son énergie cinétique est définie par :

Ec =
1

2
mv2, (unité SI : joule)

Remarque : la vitesse dépend du référentiel, donc l’énergie cinétique également.
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2 – Puissance d’une force

Une force qui agit sur le point M peut, selon les cas, faire augmenter la vitesse de M , la faire diminuer, ou la laisser
constante (mais en changer la direction). L’outil qui permet de quantifier ceci est la puissance de la force.

Définition : puissance d’une force

Soit un point matériel M de vitesse ~v, soumis à une force ~F .
La puissance de la force ~F est le produit scalaire des vecteurs force et vitesse :

P(~F ) = ~F · ~v
Unité SI : watt.

Ce sont des joules par seconde : la puissance donne donc le rythme auquel l’énergie est reçue par le système.

Si P < 0, c’est que l’énergie n’est en fait pas reçue, mais produite par le système.

Remarque : La vitesse dépend du référentiel d’étude, donc la puissance également.

Propriétés

I Si P > 0, on dit que la force est motrice : elle a tendance à augmenter la
norme de la vitesse.

I Si P < 0, on dit que la force est résistante : elle a tendance à diminuer la
norme de la vitesse.

I Si P = 0, la force ne modifie pas la norme de la vitesse, mais éventuellement
sa direction. C’est le cas si ~v ⊥ ~F .

Exemples :
 1 Indiquer dans chacun des cas ci-dessous le caractère moteur ou résistant de la force.

I Une bille en acier chute dans du glycérol.
Le liquide exerce une force de frottement ~f = −λ~v.
Schéma. ~f · ~v = −λ~v · ~v = −λv2 < 0 donc la force est résistante.

I La bille précédente est également soumise au poids ~P = m~g.
Schéma. ~P · ~v = m~g · ~v = mgv > 0 donc la force est motrice.

I La Terre exerce sur la Lune une force d’attraction gravitationnelle ~F dirigée vers le centre de la Terre. La trajectoire
lunaire est en première approximation circulaire.
Schéma. ~F · ~v = 0 donc la force modifie uniquement la direction de ~v, mais pas sa norme.

3 – Travail d’une force

a/ Travail élémentaire d’une force

Travail élémentaire d’une force (définition 1)

Le travail élémentaire d’une force ~F agissant pendant une durée infinitésimale dt est la puissance exercée par cette
force multipliée par cette durée :

δW (~F ) = P(~F )dt

Unité SI : Joule

I δW > 0 pour une force motrice, δW < 0 pour une force résistance.
Si δW = 0, on dit que la force ne travaille pas.

Remarque importante sur les notations :
On utilise deux notations pour les infiniments petits : d et δ.
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I Avec d : la notation df indique une différence de la fonction f évaluée entre deux instants très proches ou deux
points très proches.

Exemples :

– df = f(M ′) − f(M) avec M et M ′ très proches, ou encore dg = g(t′) − g(t) avec t et t′ deux instants très
proches.

– dt est un temps élémentaire, ou infinitésimal, c’est-à-dire très court.
C’est la différence entre deux instants très proches : dt = (t+ dt)− t.

– Nous avons déjà vu le déplacement élémentaire
−→
dl.

C’est bien la différence du vecteur
−−→
OM(t) entre deux instants très proches :

−→
dl =

−−→
OM(t + dt) −

−−→
OM(t) =

−−−−−−−−−−−→
M(t)M(t+ dt).

I La notation δ est utilisée pour les cas où la quantité infinitésimale ne peut pas être vue comme la différence d’une
fonction entre deux instants ou deux points.

Exemples :

– δW ne peut pas être vu comme la différence d’une fonction évaluée à deux instants très proches ou entre deux
points très proches.
En effet, noter dW signifierait que dW = W (M ′)−W (M) avec M et M ′ très proches, ce qui n’a aucun sens,
puisque le travail n’est pas défini en un point donné, mais pour un déplacement.

Seconde expression du travail élémentaire :

δW (~F ) = ~F · ~v dt = ~F ·
−→
dl
dt

dt ⇒ δW (~F ) = ~F ·
−→
dl

D’où la définition suivante :

Travail élémentaire d’une force (définition 2)

Le travail élémentaire d’une force ~F agissant pendant un déplacement
−→
dl est le produit scalaire de la force et du

déplacement élémentaire :
δW (~F ) = ~F ·

−→
dl.

(Il faut retenir les deux définitions, équivalentes, du travail élémentaire.)

 2 Indiquer dans chacun des cas ci-dessous le caractère moteur ou résistant de la force. (correction : gauche : moteur,
droite : résistant)

b/ Travail d’une force le long d’un déplacement

Lorsque le point M effectue un déplacement fini (par opposi-
tion à élémentaire) entre deux points A et B, alors le travail
total de la force ~F est obtenu en sommant tous les travaux
élémentaires le long du déplacement.

Pour cela, on décompose la trajectoire AB en une succession
de n déplacements élémentaires

−→
dli =

−−−−→
AiAi+1, et on somme :

WAB(~F ) =
∑
i

δWi = ~F1 ·
−−−→
A1A2 + ~F2 ·

−−−→
A2A3 + ...+ ~Fn−1 ·

−−−−−→
An−1An

aaaaaaaaaa

trajectoire

En passant à la limite où n tend vers l’infini, la somme devient une intégrale :

WAB(~F ) =

ˆ B

A

δW =

ˆ B

A

~F ·
−→
dl.

(C’est similaire au cas du calcul de la valeur moyenne d’un signal à l’aide d’une intégrale : partie systèmes linéaires, chapitre 4.0
(signal), I.2.c.)

On retiendra donc :
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Définition : travail d’une force

Le travail d’une force ~F lors du déplacement du point M entre les points A et B est :

WAB(~F ) =

ˆ B

A

δW =

ˆ B

A

~F ·
−→
dl

L’intégrale s’effectue sur la trajectoire effectivement suivie.

Dans le cas où la force ~F est constante au cours du mouvement, ceci se simplifie en :

WAB(~F ) = ~F ·
−−→
AB

Remarque : Le travail (élémentaire ou non) dépend du référentiel, car la trajectoire du point M en dépend.

Démonstration pour le cas de la force constante :
 3 Démontrer l’expression WAB(~F ) = ~F ·

−−→
AB dans le cas où la force ~F est constante au cours du mouvement.

WAB(~F ) =

ˆ B

A

~F ·
−→
dl

= ~F ·
ˆ B

A

−→
dl

= ~F ·
−−→
AB

Exemples

Deux exemples de calcul du travail d’une force :  4 EC1 (ascension d’un cycliste).  5 EC1bis (frottements de l’air).

Le second exemple montre une propriété importante : pour un point de départ A et un point d’arrivée B fixés, le travail
d’une force entre A et B dépend en général du chemin suivi.

Mais pas toujours, par exemple dans le cas du poids, l’EC 1 montre que son travail ne dépend que de la différence d’altitude
entre départ et arrivée, pas du chemin suivi.

II – Théorème de l’énergie cinétique
Nous l’avons dit, l’action d’une force sur un point matériel M peut faire varier sa vitesse : plus précisément, la puissance
d’une force ou son travail entraînent une variation de l’énergie cinétique (et donc de v2), selon le théorème suivant.

a/ Version instantanée

Théorème de l’énergie cinétique, version instantanée

Dans un référentiel galiléen, soit un point matériel M , d’énergie cinétique Ec et soumis à une somme de forces que
l’on note

∑ ~F et dont la somme des puissances associées est
∑
P(~F ).

On a :
dEc
dt

=
∑
P(~F ).

Ce théorème porte le nom de théorème de l’énergie cinétique (version instantanée), ou de théorème de la puissance
cinétique.

b/ Version intégrale
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Théorème de l’énergie cinétique, version intégrale

Dans un référentiel galiléen, soit un point matériel M , allant d’un point A à un point B.
Alors sa variation d’énergie cinétique entre A et B est égale au travail de toutes les forces qui s’exercent sur le
point :

Ec,B − Ec,A =
∑

WAB(~F ).

– On note aussi ∆Ec la variation entre A et B : ∆Ec = Ec,B − Ec,A.
– Ce théorème porte le nom de théorème de l’énergie cinétique (version intégrale).

Démonstrations : à suivre au tableau pour information, elles sont écrites dans la version complétée du poly, elles ne
sont pas à savoir refaire.

Considérons un point matériel M de masse m, soumis à un ensemble de forces que l’on note
∑ ~F .

L’étude est effectuée dans un référentiel galiléen.

On applique le PFD au système masse m : m
d~v
dt

=
∑ ~F .

On prend le produit scalaire par la vitesse ~v :

m~v · d~v
dt

= ~v ·
∑

~F

⇔ m
1

2

dv2

dt
=
∑

~v · ~F

⇔ d
dt

(
1

2
mv2

)
=
∑
P(~F )

⇔ dEc
dt

=
∑
P(~F ).

Passage de la ligne 1 à 2 : ~v · d~v
dt

=
1

2

d~v · ~v
dt

=
1

2

dv2

dt
Ci-dessus nous avons démontré la version instantanée. Pour arriver à la version intégrale on l’intègre le long de la trajectoire
du point A au point B :

dEc
dt

=
∑
P(~F )

⇒
ˆ B

A

dEc
dt

dt =

ˆ B

A

∑
P(~F )dt

⇒ Ec,B − Ec,A =
∑ˆ B

A

P(~F )dt

⇒ Ec,B − Ec,A =
∑

WAB(~F ).

c/ Exemple d’utilisation

 6 Glissade sans frottement, faire l’EC2.

III – Force conservative et énergie potentielle

1 – Définitions

a/ Force conservative, première définition

Force conservative (définition 1)

Une force est conservative si son travail le long d’une trajectoire AB ne dépend pas du chemin suivi pour aller de
A à B.

 7 Quelle force, vue plus tôt dans ce cours, est une force conservative ? Quel exemple n’en est pas une ?

Le poids est une force conservative, la résultante des frottements de l’air n’en est pas une.
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b/ Énergie potentielle

– Si le travail ne dépend pas du chemin suivi entre deux points fixes A et B, c’est qu’il existe une fonction Ep(M) telle
que

WAB(~F ) = −(Ep(B)− Ep(A)) = −∆Ep.

En effet, si c’est le cas, alors le travail ne dépend que des valeurs de Ep en B et en A, et pas de la trajectoire suivie
pour relier ces deux points.
(la notation ∆ signifie valeur à l’arrivée moins valeur au départ, donc ici ∆Ep = Ep(B)− Ep(A))

– Si le point B est proche de A de manière infinitésimale, alors Ep(B)− Ep(A) = dEp
(on utilise bien un d car c’est la différence d’une fonction, ici Ep, entre deux points proches).

Bilan à retenir :
Force conservative (définition 2)

Une force ~F est conservative s’il existe une fonction Ep(M) telle que le travail élémentaire de ~F est égal à l’opposée
de la différentielle de la fonction Ep :

δW (~F ) = −dEp.

On dit alors que la force ~F dérive de l’énergie potentielle Ep.

Ep(M) ne dépend que de la position du point M .

Remarque : sous forme intégrée, ceci s’écrit WAB(~F ) = −∆Ep.

Remarque : lorsque le travail associé à une force est nul, elle n’entre pas dans les bilans énergétiques. On ne dit pas qu’il
s’agit d’une force conservative, mais que la force ne travaille pas.

2 – Exemples d’énergies potentielles

a/ Expressions

Poids ⇒ Énergie potentielle de pesanteur

On considère un point matériel de masse m dans un champ de pesanteur uniforme ~g.
Le poids est une force conservative, qui dérive de l’énergie potentielle :

Ep = mgz,

lorsque z est un axe orienté vers le haut.

Pour un axe z orienté vers le bas, Ep = −mgz.

Remarque : une énergie potentielle est toujours définie à une constante près. Ci-dessus on l’a choisie pour avoir Ep(z =
0) = 0, mais d’autres choix sont possibles.

Interprétation : plus la masse est à une altitude élevée, plus son énergie potentielle de pesanteur est importante. Cette
énergie peut être ensuite convertie en une autre forme d’énergie, en énergie cinétique par exemple si on laisse chuter la
masse.

Force d’un ressort ⇒ Énergie potentielle élastique

La force de rappel d’un ressort est une force conservative, qui dérive
de l’énergie potentielle

Ep =
1

2
k(l − l0)2.

(ressort de raideur k et de longueur à vide l0)
x

~e

0 x

0l

masse
   m

x

Interprétation : plus le ressort est comprimé ou étiré par rapport à sa longueur au repos, plus son énergie potentielle élastique
est importante. Cette énergie emmagasinée peut être ensuite convertie en une autre forme d’énergie, en énergie cinétique
par exemple si on laisse le ressort se détendre.
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b/ Démonstrations

Les étapes pour obtenir l’expression de Ep sont toujours les mêmes.

I Énergie potentielle de pesanteur.

– Écrire l’expression du travail élémentaire δW associé à la force (ici le poids) :{−→
dl = dx~ex + dy~ey + dz~ez
~F = −mg~ez

⇒ δW = ~F ·
−→
dl = −mg~ez ·

−→
dl = −mgdz.

– Supposer que δW = −dEp : ici ceci implique que dEp = mgdz.

– En déduire une équation différentielle vérifiée par Ep(z) et la résoudre :

ici on a
dEp
dz

= mg, et donc par intégration Ep(z) = mgz +A.

On choisit a constante A comme on veut car seuls les ∆Ep interviennent. Souvent on la prend nulle.

I Énergie potentielle élastique.

– Écrire l’expression du travail élémentaire δW associé à la force :{−→
dl = dx~ex + dy~ey + dz~ez
~F = −k(l − l0)~uext = −k(x− l0)~ex

⇒ δW = ~F ·
−→
dl = −k(x− l0)dx.

– Supposer que δW = −dEp : ici ceci implique que dEp = k(x− l0)dx.

– En déduire une équation différentielle vérifiée par Ep(x) et la résoudre :

ici on a dEp = k(x− l0)dx, soit
dEp
dx

= k(x− l0), et donc par intégration Ep(x) =
1

2
k(x− l0)2 + A, avec x la

longueur totale du ressort.
On choisit a constante A comme on veut car seuls les ∆Ep interviennent. Souvent on la prend nulle.
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IV – Théorème de l’énergie mécanique

a/ Définition

Définition : énergie mécanique

L’énergie mécanique d’un point matériel M est la somme de son énergie cinétique et de l’énergie potentielle de
toutes les forces conservatives auxquelles il est soumis :

Em = Ec + Ep.

b/ Le théorème

Théorème de l’énergie mécanique

Dans un référentiel galiléen, soit un point matériel M , allant d’un point A à un point B.

Alors sa variation d’énergie mécanique entre A et B est égale au travail de toutes les forces non conservatives qui
s’exercent sur le point :

Em,B − Em,A =
∑

WAB,nc(~F ).

– On note aussi ∆Em =
∑
WAB,nc(~F ).

– Attention, seules les forces non conservatives interviennent dans les travaux à droite. Les forces conservatives
sont prises en compte dans Em via leurs énergies potentielles.

Cas particulier important :
Si toutes les forces sont conservatives ou ne travaillent pas, alors ∆Em = 0 : l’énergie mécanique se conserve au
cours du mouvement.

Le cas où les forces sont conservatives ou ne travaillent pas est important.

– C’est souvent le cas lorsqu’on néglige tout type de frottements. On comprend le vocabulaire : une force conservative
“conserve” l’énergie mécanique. On parle alors de mouvement conservatif.

– Dans ce cas, le théorème de l’énergie mécanique fournit une quantité, Em, constante au cours du mouvement. On
dit que Em est une intégrale première du mouvement.

– On peut obtenir la valeur de Em en l’évaluant à t = 0 (conditions initiales).

– En exploitant le fait que
dEm
dt

= 0, on peut aboutir à l’équation du mouvement (s’il n’y a qu’un seul degré de liberté).

Démonstration : à suivre au tableau pour information, elles sont écrites dans la version complétée du poly, elles ne sont
pas à savoir refaire.

Dans un référentiel galiléen, considérons un point matériel M de masse m, allant d’un point A à un point B, et soumis à
un ensemble de forces que l’on note

∑
i
~Fi.

On applique le théorème de l’énergie cinétique au point M : ∆Ec =
∑
iWAB(~Fi).

On sépare les forces en deux catégories :

– Celles qui sont conservatives. Elles dérivent d’une énergie potentielle Ep,i et donc WAB(~Fi) = −∆Ep,i.

– Celles qui ne sont pas conservatives.

On a donc :
∆Ec =

∑
i,non conservatives

WAB(~Fi) +
∑
i

−∆Ep,i

⇒ ∆Ec +
∑
i

∆Ep,i =
∑

i,non conservatives

WAB(~Fi)

C’est bien le théorème de l’énergie mécanique.

→ On retiendra donc qu’il s’agit simplement d’une reformulation du théorème de l’énergie cinétique, où les travaux des
forces conservatives ont été écrits sous forme de ∆Ep.
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c/ Exemples d’applications

 8 EC3 : chute libre.
 9 EC4 : pendule simple.

Expérience : On dispose d’un pendule avec un capteur de position angulaire. On réalise une acquisition sur une dizaine
d’oscillations.

On mesure L = 0,45m, m = 0,180 g, on connaît g = 9,8 m · s−2. On suppose que les hypothèses de l’étude s’appliquent.

On calcule alors θ̇, puis Ec = 1
2mL

2θ̇2 et Ep = mgL(1− cos θ).

Observations ci-dessous.

t (s)t1 t2

0

 10 Le repérage utilisé est différent de celui de l’exercice de cours (cf schéma). Exprimer alors dans ce cas là l’énergie
potentielle de pesanteur Ep(θ) = mgz en fonction de θ.
On a z = L− L cos θ et donc Ep(θ) = mgL(1− cos θ). En particulier elle est nulle quand le pendule est au point bas.

 11 Indiquer la position du pendule à l’instant t1, et à l’instant t2.
Instant t1 : Ec (et donc v) maximale, et Ep (donc z) minimale → le pendule est en θ = 0.
Instant t1 : Ec (et donc v) nulle, et Ep (donc z) maximale → le pendule est en θ = θmax, juste au moment où il fait
demi-tour.
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