Meécanique
Chapitre 3

Energie en mécanique

Energie cinétique, puissance et travail d'une force =
@ 2 - Puissance d'une force P = F - v

1 - Energie cinétique EC = lTm)2 >0 si force motrice, <0 si résistante.

2
\ 3 - Travail d'une force
reliés pa.r"'ixe TEC a/ élémentaire : W = Pdt = F' - d7
b/ entre A et B : VI{L‘BZ IA oW

@ Théoréme de I'énergie cinétique

dE,
dt =27

a/ Instantané (th. de la puissance cinétique)

b/ Forme intégrale (th. de I'énergie cinétique) Ec,B — Ech = Z Wag

@ Force conservative et énergie potentielle

— 2 - Exemples d'énergies potentielles
1 - Définition
in ndant hemin AaB . I
W 4 g independant du che deAaBl | . Forces conservatives : il existe F),
& il existe B, telle que 0W = —dE, | | 7 ,
Pesanteur F=mg E, =mgz T
Elastique | 7 _ E = L1k —1,)2
=—k(l— = 0
(ressort) F k(L — lo)tlex 2 ( )
Force de
gravitation
Force
électrostatique
P Forces non conservatives : Forces quine
@ Théoréme de I'énergie mécanique il n'existe pas d'énergie travaillent pas (F' L 7)
¥ potentielle £, associée - reactlondnorrr%?lgN
PP _ - tension d'un fil T
a/ Définition : B, = . + E) Y - Frottements avec I'air n'interviennent pas
PR - dans E,,ni dans les
b/ Théoreme : B, p — By 4 = Z WAB nc Frottements avec un support théorames (TEM, TEC)

Ce gu’il faut connaitre

(cours : 1)
»; Quelle est la définition de ’énergie cinétique d’une masse m de vitesse v'?

»> Quelle est la définition de la puissance d’une force ?

»3 Quelle est la définition du travail élémentaire d’une force ? (définition en fonction de la puissance P, et définition en
fonction du déplacement élémentaire Ef)
», Quelle est la définition du travail d’une force entre deux points A et B 7

(cours : 1)

»; Comment s’énonce le théoréme de 1'énergie cinétique ? (donner la forme intégrale et la forme instantanée)

(cours : 1)
»; Quelles sont les deux définitions d’une force conservative 7

Donner un exemple de force conservative, et un exemple de force non conservative.

»7 Quelle est 'expression de ’énergie potentielle de pesanteur ?

Et celle de I’énergie potentielle élastique (force exercée par un ressort) ?
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Exercices de cours

Comment s’exprime la force F en fonction de I'énergie potentielle E,(x) associée?

(cours : IV)

Comment s’énonce le théoréme de I’énergie mécanique ?

Dans quels cas I’énergie mécanique d’un point matériel est-elle conservée au cours du mouvement ?

qu’il faut savoir faire

(cours : 1)

Identifier si une force est motrice, résistante ou si elle ne travaille pas.

Calculer le travail d’'une force sur un déplacement. — EC1, EClbis
(cours : 1)

Appliquer le théoréme de 1’énergie cinétique ou de la puissance cinétique. — EC2, TD I
(cours : 11I)

Distinguer force conservative et force non conservative.

(cours : 1V)
Utiliser le théoréme de I’énergie mécanique. Reconnaitre les cas de conservation de I’énergie mécanique. Utiliser les
conditions initiales pour exprimer E,,. — EC3, EC4, TD I, II, III, IV

Exercice C1 — Calcul de travail et de puissance : ascension d’un cycliste

Un cycliste de masse m = 80kg (vélo et équipement inclus) effectue 1’ascension du Ballon d’Alsace (dénivelé de 700 m).

1 - Calculer le travail W du poids lors de cette ascension.

2 - Le cycliste roule en ligne droite & 15km/h sur une pente montante de 10% (donc avec un angle par rapport a
I'horizontale de o = arctan(10/100)). Que vaut la puissance du poids? Commenter son signe.
Comparer avec la puissance dégagée par le corps humain au repos qui est d’environ 100 W.
Correction

1 - Soit A le point de départ et B celui d’arrivée. Soit z un axe orienté vers le haut et h la hauteur de I’ascension.

2.

Le poids mg est une force constante, donc :
Wap(P) =mg- AB.
Org=ge.. Ete, - ﬁ est la composante selon z du vecteur ﬁ, donc €, zﬁ = h. D’ou
Wap(P) = mge, - AL = mgh = 5,6 x 10°J.
Faire un schéma. Puissance du poids :
P =P.5=|P|||7] cos(P,7) =mgv cos(ax + 7/2) = —mgvsin o

L’AN donne P = —330W.

Négatif car dans une montée, le poids est résistant. Le cycliste doit donc fournir cette puissance pour avancer. C’est
donc environ trois fois la puissance du corps humain au repos.
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Exercice Clbis — Calcul de travail : frottements de I'air

Une voiture va d’un point A & un point B distants de d = 10km, en cas 2
roulant avec une vitesse constante. On modélise les frottements dus a
Pair par une force F' = —\¥ (avec A qui dépend de v, constant ici).
1 - Pour chacune des trajectoires ci-contre, donner I’expression du tra-
vail de la force de frottement lors de ce déplacement. >
A cas 1 B
Correction
B B
1- WAB(F):/ F-Ef:/ G- dl.
A A
Or U et 3 sont toujours colinéaires, donc v - Ef =wvdl.
B
Comme v est constante par hypothése, on peut la sortir de U'intégrale : Wap(F) = f)\v/ di.
A

Or ff dl = L g, longueur du parcours de A a B (cf “notions mathématiques”). On a donc le résultat général :

WAB(ﬁ) = —)\’ULAB.

*Cas1: Lag =d donc WAB(ﬁ) = —\vd.

1.d d o, d
*Cas 2: Lag = 527r§ = % donc Wyp(F) = —)\u%.

Exercice C2 — Application du théoréme de I'énergie cinétique : glissade sans frottement

On considére un objet qui glisse sur un plan incliné d’un angle « par rapport & I’horizontale. On le modélise par un point
matériel M de masse m glissant sans frottements. L’objet est 1aché sans vitesse initiale, et on choisit le repére tel qu’a
tout instant, ¥ = v(t) €, (cf schéma). Le référentiel du plan est supposé galiléen.

1 - Faire un bilan des forces et donner ’expression de la puissance de chacune
des forces, notamment en fonction de m, g, v et a.

2 - En déduire une équation différentielle suivie par la composante v de la
vitesse.

Correction
1 - Faire un schéma. Bilan des forces et calculs des puissances :
~ Reéaction normale du support N. On a P(N) =N -7 =0 car N L 7.
~ Poids P. On a P(P) = P -7 = ||P|||7]| cos(P,7) = mgvcos(7/2 — a) = mgvsin a.
(Sl y avait eu des frottements f, leur puissance ne serait pas nulle)

2 - Théoréme de la puissance cinétique :
dE, - —
dt‘ =P(N)+P(P)

d (1 2) .
—muv = mgvsin «

dt \ 2

= MY = mgusina

- [F=gemal
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Exercice C3 — Application du TEM sur le cas de la chute libre

On considére une masse m en chute libre sans vitesse initiale dans un champ de pesanteur ¢ uniforme. On néglige tout
frottement et le référentiel d’étude est galiléen. On utilise un axe z orienté vers le bas, avec z = 0 initialement.

1 - Donner 'expression de I’énergie potentielle de pesanteur de la masse en fonction notamment de z.

2 - En appliquant le théoréme de ’énergie mécanique, exprimer la vitesse de la masse aprés une chute d’une hauteur h.

Correction
1- E,=—-mgz.
2 - Bilan des forces : le poids. Toutes les forces sont conservatives, donc F,,, = cst.

Donc en notant A le point de départ et B le point d’arrivée, on a F,,(A) = E,,(B).

Or E,,(A) =0—0 =0 (car la vitesse de départ est nulle, et car z4 = 0 par choix de l'origine de I'axe),

1
et E,,(B) = imv% —mgh (car zg = h).

1
Ainsi, E,,(A) = E,,(B) donne 0 = §mv]23 — mgh et donc |vp = +/2gh.

Exercice C4 — Application du TEM sur le cas du pendule simple

On considére un pendule dont toute la masse m est localisée au point M. Le fil reliant O & M est supposé inextensible et
de masse négligeable, on note L sa longueur. On néglige tout frottement. On se place dans le référentiel terrestre supposé
galiléen. Le champ de pesanteur est § = g€, avec z axe vers le bas et g ~ 10m/s? constante.

1 - Donner I'expression de ’énergie cinétique de la masse m en fonction des
coordonnées polaires du point M.
2 - Faire de méme pour ’énergie potentielle de pesanteur du point M. o >
Yy
3 - Que peut-on dire du travail de la force de tension du fil ?
4 - En appliquant le théoreme de I'énergie mécanique, trouver une intégrale g’ 0 \ L
premiére du mouvement, ¢’est-a-dire une quantité comprenant 6(t) et 6(¢)
qui reste constante tout au long du mouvement. M
5 - En déduire I’équation du mouvement, qui porte sur 0 et 0. A |

Correction

N .
1 - En polaires on a OM = Lé,., et en dérivant : v = Léy.
1 1 . 1 .

Dou E. = §mv2 = im(LQ)2 = §mL292.
2 - Avec un schéma on voit que z = Lcos#.

L’énergie potentielle de pesanteur est donc F, = —mgz = —mgL cos 6.

3 - On a toujours v L T donc la tension du fil a une puissance et un travail nuls. Elle n’intervient pas dans les bilans
énergétiques.

4 - Toutes les forces sont conservatives (ou ne travaillent pas), donc E,, = cst.

1 .
Onadonc:|FE, =E.+FE, = imLQG2 — mgL cosf = cst.

5 - On dérive :
dE,, ~0
dt
1 d6? dcos@
“mL2=— —mgL =
= gl mmel—g— =0

1 .
= §mL2 200 + mgL0sinf =0

= L%0+ gLsinf =0

N é+%sin9:0.

On retrouve bien la méme équation qu’au chapitre précédent.
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Notions mathématiques

e Produit scalaire de deux vecteurs @ et ¥ : v
oL T «
-0 = ||d||]|7] cosa.
Uu
. ) 1 . , dlp_y
o Intégrale d’une longueur élémentaire dl le long d’'une e
courbe AB : A v B
B 2
/ dl = LAB dll
A
ou L ap est la longueur de la courbe de A & B. A

e Intégrale du déplacement élémentaire ai le long e

d’une courbe AB : Efz ,,,,,
B i,
[d - //
A

Cours

| — Energie cinétique, puissance et travail d'une force

1 — Energie cinétique

| Définition : énergie cinétique ]

Soit un point matériel M de masse m et de vitesse v (en norme).
Son énergie cinétique est définie par :

E. = §mv2, (unité SI : joule)

Remarque : la vitesse dépend du référentiel, donc I’énergie cinétique également.
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2 — Puissance d’une force

Une force qui agit sur le point M peut, selon les cas, faire augmenter la vitesse de M, la faire diminuer, ou la laisser
constante (mais en changer la direction). L’outil qui permet de quantifier ceci est la puissance de la force.

| Définition : puissance d’une force ]
J

Soit un point matériel M de vitesse ¥, soumis a une force F.
La puissance de la force F' est le produit scalaire des vecteurs force et vitesse :

P(F)=F.¢
Unité SI : watt.
Ce sont des joules par seconde : la puissance donne donc le rythme auquel I’énergie est regue par le systéme.

Si P < 0, c’est que I’énergie n’est en fait pas regue, mais produite par le systéme.

Remarque : La vitesse dépend du référentiel d’étude, donc la puissance également.

| Propriétés !

» Si P > 0, on dit que la force est motrice : elle a tendance a augmenter la
norme de la vitesse.

» Si P < 0, on dit que la force est résistante : elle a tendance & diminuer la
norme de la vitesse.

» Si P =0, la force ne modifie pas la norme de la vitesse, mais éventuellement
sa direction. C’est le cas si v L F.

Exemples :
~~1 Indiquer dans chacun des cas ci-dessous le caractére moteur ou résistant de la force.

» Une bille en acier chute dans du glycérol.
Le liquide exerce une force de frottement f = —\U.

Schéma. F T =—\-¥=—Mv? <0 donc la force est résistante.

» La bille précédente est également soumise au poids P= mg.

Schéma. P - v =mg - v = mgv > 0 donc la force est motrice.

» La Terre exerce sur la Lune une force d’attraction gravitationnelle F' dirigée vers le centre de la Terre. La trajectoire
lunaire est en premiére approximation circulaire.

Schéma. F' - ¥ = 0 donc la force modifie uniquement la direction de v, mais pas sa norme.

3 — Travail d’une force

a/ Travail éléementaire d’une force

| Travail élémentaire d’une force (définition 1) ]
J

Le travail élémentaire d’une force F' agissant pendant une durée infinitésimale dt est la puissance exercée par cette
force multipliée par cette durée :

SW(F) = P(F)dt

Unité SI : Joule

» 0 > 0 pour une force motrice, §W < 0 pour une force résistance.

Si 6W = 0, on dit que la force ne travaille pas.

Remarque importante sur les notations :
On utilise deux notations pour les infiniments petits : d et 4.
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» Avec d : la notation df indique une différence de la fonction f évaluée entre deux instants trés proches ou deux
points trés proches.

Exemples :

—df = f(M') — f(M) avec M et M’ trés proches, ou encore dg = g(t') — g(t) avec t et t’ deux instants trés
proches.

— dt est un temps élémentaire, ou infinitésimal, c’est-a-dire trés court.
C’est la différence entre deux instants trés proches : dt = (¢t + dt) — ¢.

— Nous avons déja vu le déplacement élémentaire 7

— s s
C’est bien la différence du vecteur OM (t) entre deux instants trés proches : al = OM(t +dt) — OM(t) =

M@E)M(t+ dt )
» La notation § est utilisée pour les cas ou la quantité infinitésimale ne peut pas étre vue comme la différence d’une
fonction entre deux instants ou deux points.

Exemples :

— 0W ne peut pas étre vu comme la différence d’une fonction évaluée & deux instants trés proches ou entre deux
points trés proches.
En effet, noter dW signifierait que dW = W (M') — W (M) avec M et M’ trés proches, ce qui n’a aucun sens,
puisque le travail n’est pas défini en un point donné, mais pour un déplacement.

Seconde expression du travail élémentaire :

5W(ﬁ)ﬁ~6dtﬁ~ﬁdt = |oW(

T
Il
".111
=

D’ou la définition suivante :

| Travail élémentaire d’une force (définition 2) |

Le travail élémentaire d’une force F agissant pendant un déplacement EZ est le produit scalaire de la force et du
déplacement élémentaire :

—

SW(F) = F-dl.

(11 faut retenir les deux définitions, équivalentes, du travail élémentaire.)

~+9 Indiquer dans chacun des cas ci-dessous le caractére moteur ou résistant de la force. (correction : gauche : moteur,
droite : résistant,)

b/ Travail d’une force le long d’un déplacement

Lorsque le point M effectue un déplacement fini (par opposi-
tion & élémentaire) entre deux points A et B, alors le travaill T TIEEEET

total de la force F est obtenu en sommant tous les travaux 7 """"""""""""""""""""""""""" A,-1 B= A,
élémentaires le long du déplacement. dl2

Ag
Pour cela, on décompose la trajectoire AB en une succession d? LA
. 212 s 2
de n déplacements élémentaires dl; = A;A;41, et on somme :

- L — o —— - B
Wap(F) =) 6W;=Fi - AiAs + Fy- ApAs + .+ Foy - Au s Ay
i
En passant a la limite ou n tend vers 'infini, la somme devient une intégrale :

WAB(ﬁ)z/jaW:/ABﬁE.

(C’est similaire au cas du calcul de la valeur moyenne d’un signal a l’aide d’une intégrale : partie systémes linéaires, chapitre 4.0
(signal), I.2.c.)

On retiendra donc :
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,_[ Définition : travail d’une force ]

Le travail d'une force F lors du déplacement du point M entre les points A et B est :
WAB(F):/ 5W:/ Fodl
A A

L’intégrale s’effectue sur la trajectoire effectivement suivie.

Dans le cas ol la force F' est constante au cours du mouvement, ceci se simplifie en :

Wagp(F) = F-AB

Remarque : Le travail (élémentaire ou non) dépend du référentiel, car la trajectoire du point M en dépend.

Démonstration pour le cas de la force constante :

~3 Démontrer I’expression WAB(ﬁ) =F. zﬁ dans le cas oil la force F est constante au cours du mouvement.
B

WAB(ﬁ):/ Fodl

A
B
:ﬁ./ T
A
_F.AB

Exemples

Deux exemples de calcul du travail d’une force : ~»4 EC1 (ascension d’un cycliste). ~-»5 EC1bis (frottements de lair).
Le second exemple montre une propriété importante : pour un point de départ A et un point d’arrivée B fixés, le travail
d’une force entre A et B dépend en général du chemin suivi.

Mais pas toujours, par exemple dans le cas du poids, 'EC 1 montre que son travail ne dépend que de la différence d’altitude
entre départ et arrivée, pas du chemin suivi.

Il — Théoréeme de |'énergie cinétique

Nous 'avons dit, I'action d’une force sur un point matériel M peut faire varier sa vitesse : plus précisément, la puissance
d’une force ou son travail entrainent une variation de 'énergie cinétique (et donc de v?), selon le théoréme suivant.

a/ Version instantanée

Théoréme de I’énergie cinétique, version instantanée ]
9
J

Dans un référentiel galiléen, soit un point matériel M, d’énergie cinétique F, et soumis & une somme de forces que
lon note Y F' et dont la somme des puissances associées est »  P(F).

On a:
dE. -,
o E P(F).

Ce théoréme porte le nom de théoréme de ’énergie cinétique (version instantanée), ou de théoréme de la puissance
cinétique.

b/ Version intégrale
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| Théoréme de I’énergie cinétique, version intégrale ]
J

Dans un référentiel galiléen, soit un point matériel M, allant d’un point A & un point B.
Alors sa variation d’énergie cinétique entre A et B est égale au travail de toutes les forces qui s’exercent sur le
point :

E.p—Eca=Y Wap(F).

— On note aussi AE, la variation entre A et B : AE. = E. p — E. 4.
— Ce théoréme porte le nom de théoréme de 1’énergie cinétique (version intégrale).

J

Démonstrations : & suivre au tableau pour information, elles sont écrites dans la version complétée du poly, elles ne
sont pas & savoir refaire.

Considérons un point matériel M de masse m, soumis & un ensemble de forces que 1'on note y F.

L’étude est effectuée dans un référentiel galiléen.

dvf
On applique le PFD au systéme masse m : ma =>
On prend le produit scalaire par la vitesse ¥/ :

gl

o |95 _ > P(F).

dv 1dv-v 1de?
Passage de laligne1a2: 70 — = -———— = ——

8 & at 2 At 2t
Ci-dessus nous avons démontré la version instantanée. Pour arriver a la version intégrale on l'intégre le long de la trajectoire

du point A au point B :
dE. P(F)
dt 2

B B
dE,. _
= F
:»/A S ar /AE:P( dt

B
= ECA,B - EC,A = Z/ ’P(ﬁ)dt
A

= |Eep — Bea =Y _ Wap(F).

c/ Exemple d'utilisation

~¢ Glissade sans frottement, faire 'EC2.

I1l — Force conservative et énergie potentielle
1 — Définitions

a/ Force conservative, premiére définition

| Force conservative (définition 1) |
J

Une force est conservative si son travail le long d'une trajectoire AB ne dépend pas du chemin suivi pour aller de
Aa B.

~7 Quelle force, vue plus t6t dans ce cours, est une force conservative ? Quel exemple n’en est pas une ?

Le poids est une force conservative, la résultante des frottements de ’air n’en est pas une.
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b/ Energie potentielle

— Si le travail ne dépend pas du chemin suivi entre deux points fixes A et B, c’est qu'il existe une fonction E, (M) telle
que
Wap(F) = —(Ep(B) — Ep(A)) = —AE,.

En effet, si c’est le cas, alors le travail ne dépend que des valeurs de E, en B et en A, et pas de la trajectoire suivie
pour relier ces deux points.

(la notation A signifie valeur & larrivée moins valeur au départ, donc ici AE, = E,(B) — E,(A))

— Si le point B est proche de A de maniére infinitésimale, alors E,(B) — E,(A) = dE,

(on utilise bien un d car c’est la différence d’une fonction, ici E,, entre deux points proches).

Bilan a retenir :
| Force conservative (définition 2) |

Une force F est conservative s'il existe une fonction E, (M) telle que le travail élémentaire de F est égal a 'opposée
de la différentielle de la fonction F, :

SW(F) = —dE,.

On dit alors que la force F dérive de I’énergie potentielle E,,.

E,(M) ne dépend que de la position du point M.

Remarque : sous forme intégrée, ceci s'écrit Wap(F) = —AE,.

J

Remarque : lorsque le travail associé & une force est nul, elle n’entre pas dans les bilans énergétiques. On ne dit pas qu’il
s’agit d’une force conservative, mais que la force ne travaille pas.

2 — Exemples d’énergies potentielles

a/ Expressions

Poids = Energie potentielle de pesanteur

On considére un point matériel de masse m dans un champ de pesanteur uniforme g.
Le poids est une force conservative, qui dérive de I’énergie potentielle :

lorsque z est un axe orienté vers le haut.

Pour un axe z orienté vers le bas, E, = —mgz.

Remarque : une énergie potentielle est toujours définie & une constante prés. Ci-dessus on ’a choisie pour avoir E,(z =
0) = 0, mais d’autres choix sont possibles.

Interprétation : plus la masse est & une altitude élevée, plus son énergie potentielle de pesanteur est importante. Cette
énergie peut étre ensuite convertie en une autre forme d’énergie, en énergie cinétique par exemple si on laisse chuter la
masse.

Force d’un ressort = Energie potentielle élastique

La force de rappel d’un ressort est une force conservative, qui dérive
de I’énergie potentielle lo >

[ CO0000050 - frase

1
B, = 5k(l—10)* ; i

2
11
¥

(ressort de raideur k et de longueur a vide lp)

Interprétation : plus le ressort est comprimé ou étiré par rapport a sa longueur au repos, plus son énergie potentielle élastique
est importante. Cette énergie emmagasinée peut étre ensuite convertie en une autre forme d’énergie, en énergie cinétique
par exemple si on laisse le ressort se détendre.
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b/ Démonstrations

Les étapes pour obtenir '’expression de E, sont toujours les mémes.

» Energie potentielle de pesanteur.
— Ecrire I'expression du travail élémentaire 61 associé a la force (ici le poids) :

dl = da?, + dy@, + dz=é, )
. Yy = 5W:F~a:—mg€z~a:—mgdz.
F = —mge,

— Supposer que 6W = —dE, : ici ceci implique que dE, = mgdz.
— En déduire une équation différentielle vérifiée par E,(z) et la résoudre :
dE
ici on a —2 = myg, et donc par intégration E,(z) = mgz + A.

dz
On choisit a constante A comme on veut car seuls les AE, interviennent. Souvent on la prend nulle.

» Energie potentielle élastique.

— Ecrire 'expression du travail élémentaire W associé a la force :

dl = e, + dy@, + dze, 5
{ ré, + dyey + dze ~ W = Fai — 7k(xfl0)dl‘.

F = —k(l = ly)liexy = —k(z — 1y)&,
— Supposer que 6W = —dE, :  ici ceci implique que dE, = k(z — lp)dz.
— En déduire une équation différentielle vérifiée par E,(z) et la résoudre :
dE 1
ici on a dE, = k(x — lp)dz, soit d—xp = k(z —lp), et donc par intégration E,(z) = §k(x —1p)? + A, avec 7 la

longueur totale du ressort.
On choisit a constante A comme on veut car seuls les AE), interviennent. Souvent on la prend nulle.
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IV — Théoréme de I'énergie mécanique

a/ Définition

| Définition : énergie mécanique ]
J

L’énergie mécanique d’un point matériel M est la somme de son énergie cinétique et de ’énergie potentielle de
toutes les forces conservatives auxquelles il est soumis :

| B = B+ By

b/ Le théoréme

| Théoréme de I’énergie mécanique ]
J

Dans un référentiel galiléen, soit un point matériel M, allant d’'un point A & un point B.

Alors sa variation d’énergie mécanique entre A et B est égale au travail de toutes les forces non conservatives qui
s’exercent sur le point :

Em,B - Em,A = Z WAB,nc(F:)-

— On note aussi AE,, =) WAB,HC(F").

— Attention, seules les forces non conservatives interviennent dans les travaux a droite. Les forces conservatives
sont prises en compte dans F,, via leurs énergies potentielles.

Cas particulier important :
Si toutes les forces sont conservatives ou ne travaillent pas, alors AFE,, = 0 : I’énergie mécanique se conserve au
cours du mouvement.

Le cas o1 les forces sont conservatives ou ne travaillent pas est important.

— C’est souvent le cas lorsqu’on néglige tout type de frottements. On comprend le vocabulaire : une force conservative
“conserve” I’énergie mécanique. On parle alors de mouvement conservatif.

— Dans ce cas, le théoréme de 1’énergie mécanique fournit une quantité, E,,, constante au cours du mouvement. On
dit que F,, est une intégrale premiére du mouvement.

— On peut obtenir la valeur de E,, en I'évaluant a ¢ = 0 (conditions initiales).

. . dE . .
— En exploitant le fait que ditm = 0, on peut aboutir a ’équation du mouvement (s’il n’y a qu’un seul degré de liberté).
Démonstration : a suivre au tableau pour information, elles sont écrites dans la version complétée du poly, elles ne sont
pas a savoir refaire.

Dans un référentiel galiléen, considérons un point matériel M de masse m, allant d’un point A & un point B, et soumis a
un ensemble de forces que 'on note ), F;.

On applique le théoréme de I’énergie cinétique au point M : AE, =) . Wap (F;)
On sépare les forces en deux catégories :

— Celles qui sont conservatives. Elles dérivent d’une énergie potentielle £, ; et donc Wy B(ﬁi) =-AFE,;.
— Celles qui ne sont pas conservatives.

On a donc : .
AB, = Y. Wap(F)+)Y —AE,;

i,non conservatives

= AE.+Y AE,;= Y Wap(F)

i,non conservatives

C’est bien le théoréme de ’énergie mécanique.

— On retiendra donc qu’il s’agit simplement d’une reformulation du théoréme de ’énergie cinétique, oit les travaux des
forces conservatives ont été écrits sous forme de AE,,.
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c/ Exemples d’applications

~~g EC3 : chute libre.
~g9 EC4 : pendule simple.

Expérience : On dispose d’un pendule avec un capteur de position angulaire. On réalise une acquisition sur une dizaine
d’oscillations.

On mesure L = 0,45m, m = 0,180 g, on connait g = 9,8m - s~2. On suppose que les hypothéses de I’étude s’appliquent.
On calcule alors 6, puis E, = %mLzé2 et E, = mgL(1 — cosf).

Observations ci-dessous.

Ec, Ep, Em

x107
20

17.5

12,5

7.5

2,5

-2,5

~+109 Le repérage utilisé est différent de celui de l'exercice de cours (cf schéma). Exprimer alors dans ce cas la I’énergie
potentielle de pesanteur E,(6) = mgz en fonction de 6.
On a z= L — Lcosf et donc E,(0) = mgL(1 — cosf). En particulier elle est nulle quand le pendule est au point bas.

~>11 Indiquer la position du pendule & l'instant ¢1, et a I'instant t,.

Instant ¢, : E. (et donc v) maximale, et £, (donc z) minimale — le pendule est en 6 = 0.

Instant ¢ : E. (et donc v) nulle, et E, (donc z) maximale — le pendule est en 6 = 0y,.x, juste au moment ou il fait
demi-tour.
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