Partie VI: Mécanique

Chapitre 1

Correction - DM 7 - Chute avec frottements et résolution numérique

I Chute libre d'un parachutiste

- 1 ★ Schéma obligatoire. ★ Système : {Luke}, référentiel terrestre supposé galiléen.
 - ★ Bilan des forces :
 - le poids $\vec{P} = m\vec{g} = mg\vec{e}_z$;
 - la force de frottement $\vec{f} = -kv^2\vec{e_z}$ (elle est dirigée selon $-\vec{e_z}$ car la chute est purement verticale et vers le bas).
 - * Principe fondamental de la dynamique : $m \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \vec{P} + \vec{f}$.

Or ici $\vec{v} = v\vec{e}_z$, donc on obtient : $m\frac{\mathrm{d}v}{\mathrm{d}t}\vec{e}_z = mg\vec{e}_z - kv^2\vec{e}_z$.

- * Projection sur \vec{e}_z : $m\frac{\mathrm{d}v}{\mathrm{d}t} = mg kv^2$. Soit donc: $dv + \frac{k}{m}v^2 = g$.
- 2 La vitesse limite v_l est atteinte lorsque la force de frottement finit par compenser le poids. Mathématiquement, $v_l = \text{cst}$, donc dans l'équation du mouvement $\frac{\mathrm{d}v_l}{\mathrm{d}t} = 0$, et il reste donc $0 + \frac{k}{m}v_l^2 = g$,

d'où
$$v_l = \sqrt{\frac{mg}{k}}$$
.

- **3 -** On inverse la relation précédente pour isoler $k: k = \frac{mg}{v_l^2} = 0.35 \,\mathrm{kg}\,\mathrm{m}^{-1}$.
- 4 L'équation différentielle précédente n'est pas linéaire à cause du terme en v^2 . Elle n'est donc pas simple à résoudre.
- 5 On lit sur le graphique qu'il faut $\underline{10\,\mathrm{s}}$ pour atteindre 95% de la vitesse limite. Ceci a lieu au bout d'une hauteur de chute de $\underline{350\,\mathrm{m}}$ environ. C'est donc assez rapide et la plus grande partie du saut a lieu à la vitesse limite.

Attention : la méthode avec 3τ ne marche que si la solution est en $e^{-t/\tau}$, ce qui n'est pas le cas ici (l'équation est non linéaire et on ne connait pas la forme de la solution).

Il Résolution de problème : vitesse de course avant un saut

Nous avons vu que la portée d'un "tir" est $d = \frac{v_0^2}{q}$ (exercice II du TD).

Nous plaçons donc dans les hypothèses où ceci est valide : le saut est sans frottement et dans un champ de pesanteur g, avec une vitesse initiale v_0 .

Il faut estimer la distance du saut. En supposant que l'homme debout à droite mesure $1\,\mathrm{m}\,90$, on obtient une portée de $13.9\,\mathrm{m}$.

On a donc

$$v_0 = \sqrt{gd} = 11.7 \,\mathrm{m \, s^{-1}} = 42 \,\mathrm{km \, h^{-1}}.$$

En comparaison, le record du monde de course sur $100\,\mathrm{m}$ en $9,58\,\mathrm{s}$ implique une vitesse moyenne de $37\,\mathrm{km/h}$. Record battu sur cette affiche?

Partie VI: Mécanique

Chapitre 1

Correction - DM 7 - Chute avec frottements et résolution numérique

I Chute libre d'un parachutiste

- 1 ★ Schéma obligatoire. ★ Système : {Luke}, référentiel terrestre supposé galiléen.
 - ★ Bilan des forces :
 - le poids $\vec{P} = m\vec{g} = mg\vec{e}_z$;
 - la force de frottement $\vec{f} = -kv^2\vec{e_z}$ (elle est dirigée selon $-\vec{e_z}$ car la chute est purement verticale et vers le bas).
 - * Principe fondamental de la dynamique : $m \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \vec{P} + \vec{f}$.

Or ici $\vec{v} = v\vec{e}_z$, donc on obtient : $m\frac{\mathrm{d}v}{\mathrm{d}t}\vec{e}_z = mg\vec{e}_z - kv^2\vec{e}_z$.

- * Projection sur \vec{e}_z : $m\frac{\mathrm{d}v}{\mathrm{d}t} = mg kv^2$. Soit donc: $dv + \frac{k}{m}v^2 = g$.
- 2 La vitesse limite v_l est atteinte lorsque la force de frottement finit par compenser le poids. Mathématiquement, $v_l = \text{cst}$, donc dans l'équation du mouvement $\frac{\mathrm{d}v_l}{\mathrm{d}t} = 0$, et il reste donc $0 + \frac{k}{m}v_l^2 = g$,

d'où
$$v_l = \sqrt{\frac{mg}{k}}$$
.

- **3 -** On inverse la relation précédente pour isoler $k: k = \frac{mg}{v_l^2} = 0.35 \,\mathrm{kg}\,\mathrm{m}^{-1}$.
- 4 L'équation différentielle précédente n'est pas linéaire à cause du terme en v^2 . Elle n'est donc pas simple à résoudre.
- 5 On lit sur le graphique qu'il faut $\underline{10\,\mathrm{s}}$ pour atteindre 95% de la vitesse limite. Ceci a lieu au bout d'une hauteur de chute de $\underline{350\,\mathrm{m}}$ environ. C'est donc assez rapide et la plus grande partie du saut a lieu à la vitesse limite.

Attention : la méthode avec 3τ ne marche que si la solution est en $e^{-t/\tau}$, ce qui n'est pas le cas ici (l'équation est non linéaire et on ne connait pas la forme de la solution).

Il Résolution de problème : vitesse de course avant un saut

Nous avons vu que la portée d'un "tir" est $d = \frac{v_0^2}{q}$ (exercice II du TD).

Nous plaçons donc dans les hypothèses où ceci est valide : le saut est sans frottement et dans un champ de pesanteur g, avec une vitesse initiale v_0 .

Il faut estimer la distance du saut. En supposant que l'homme debout à droite mesure $1\,\mathrm{m}\,90$, on obtient une portée de $13.9\,\mathrm{m}$.

On a donc

$$v_0 = \sqrt{gd} = 11.7 \,\mathrm{m \, s^{-1}} = 42 \,\mathrm{km \, h^{-1}}.$$

En comparaison, le record du monde de course sur $100\,\mathrm{m}$ en $9,58\,\mathrm{s}$ implique une vitesse moyenne de $37\,\mathrm{km/h}$. Record battu sur cette affiche?