Partie III : Chimie

 \mathbf{TP}

Correction – TP 10 : Dosage des ions hypochlorites d'une eau de Javel

I Introduction

II Expérience

II.1 Dilution de l'eau de Javel

1 – Il faut prélever un volume $V=\frac{V_1'}{\alpha}$, placer ceci dans une fiole jaugée de volume V_1' , et compléter avec de l'eau distiller jusqu'au trait de jauge.

II.2 Titrage de l'eau de Javel

Questions préliminaires

2 – On prélève un volume V_1 de la solution diluée de Javel que l'on place dans un bécher. Donner l'expression de la quantité de matière $n_1 = c_1 \times V_1$.

Vu que la réaction consomme un ion ClO⁻ pour une molécule de diiode formée, il y a une quantité de matière de diiode identique, égale à $n_1 = c_1V_1$.

Protocole

III Exploitation de l'expérience

3.a – L'équivalence est l'instant où l'on a introduit l'espèce à titrer et l'espèce titrante en proportions stœchiométriques.

La réaction de titrage est

$$I_{2 (aq)} + 2 S_2 O_{3 (aq)}^{2-} = 2 I_{(aq)}^{-} + S_4 O_{6 (aq)}^{2-}.$$
 (1)

Ici on a donc à l'équivalence :

$$\frac{n_{\text{I}_2 \text{ initial}}}{1} = \frac{n_{\text{S}_2\text{O}_3^{2-} \text{ vers\'e}}}{2}$$

$$c_1 V_1 = \frac{c_B V_{\acute{\text{eq}}}}{2}$$

$$c_1 = \frac{c_B V_{\acute{\text{eq}}}}{2V_1}$$
(2)

3.b – D'où finalement
$$c_0 = \frac{\alpha c_B V_{\text{\'eq}}}{2V_1}$$
.

La formule de propagation des incertitudes sur c_0 donne :

$$\frac{\Delta c_0}{c_0} = \sqrt{\left(\frac{\Delta c_B}{c_B}\right)^2 + \left(\frac{\Delta V_1}{V_1}\right)^2 + \left(\frac{\Delta V_{\text{\'eq}}}{V_{\text{\'eq}}}\right)^2 + \left(\frac{\Delta \alpha}{\alpha}\right)^2}.$$
 (3)

 $\text{Avec } \frac{\Delta c_B}{c_B} = 0.5\% \text{ (qui dépend du matériel utilisé pour préparer la solution titrante)}, \ \frac{\Delta V_1}{V_1} \text{ négligeable},$

$$\frac{\Delta V_{\text{éq}}}{V_{\text{éq}}} = \frac{0.1}{8}$$
 et $\Delta \alpha / \alpha = 0.5\%$, on obtient $\boxed{\frac{\Delta c_0}{c_0} = 2\%}$.

IV Comparaison avec la valeur annoncée par le fabriquant

4.a – On veut comparer à l'indication du fabricant. Celui-ci donne le degré chlorométrique de l'eau de Javel : $d^{\rm o}=18$ degrés. Ceci correspond au volume (en litres) de dichlore gazeux que peut dégager 1 L d'eau de Javel selon la réaction

$$Cl_{(aq)}^{-} + ClO_{(aq)}^{-} + 2H_{(aq)}^{+} = Cl_{2(g)} + H_{2}O_{(l)}.$$
 (4)

- * Un volume $V_0=1\,\mathrm{L}$ d'une eau de Javel de concentration c_0 en ClO⁻ peut libérer une quantité de matière de dichlore $n=c_0\times V_0$.
- \star Cette quantité de $\text{Cl}_{2\,\text{(g)}}$ correspond, dans les CNTP, à un volume de gaz $V=nV_m=c_0V_0V_m$.
- * Ceci correspond à $d^{\rm o}$ litres. On a donc la relation $d^{\rm o}=c_0V_m$, soit $c_{0\,{\rm fab}}=\frac{d^{\rm o}}{V_m}=0.80\,{\rm mol/L.}$

Remarque : On rencontre aussi sur les emballages de Javel la mention %c.a., qui signifie pourcentage de chlore actif, et qui représente la masse de dichlore (en grammes) que peut libérer 100 g d'eau de Javel.

Ainsi, $m = 100 \,\mathrm{g}$ d'eau de Javel correspondent à un volume $V_0 = m/\rho$, et donc à une quantité de matière de ClO⁻ en solution $n = V_0 c_0$. La quantité de matière de dichlore dégagé est la même, et la masse de dichlore est donc $m/\rho \times c_0 \times M_{\text{Cl}_2}$.

Finalement, on a la relation %c.a. = $\frac{c_0 M_{\text{Cl}_2}}{\rho}$.

Soit encore
$$\%$$
c.a. $=\frac{d^{\rm o}M_{{\rm Cl}_2}}{V_m \rho}$.

Pour ρ on prendra $1.19\,\mathrm{g/cm^3}$, valeur probablement correcte pour $d^{\mathrm{o}}=48$, et donc valeur approchée pour les autres concentrations.

On trouve donc, par exemple:

d^{o}	%c.a.	$c_{0\mathrm{fab}}$	$V_{\rm \acute{e}q}$ attendu (si dilution $\alpha=10$)	$V_{\rm \acute{e}q}$ attendu (si dilution $\alpha=20$)
18	4.8%	$0.80\mathrm{mol/L}$	$16.0\mathrm{mL}$	$8.0\mathrm{mL}$
36	9.6%	$1.61\mathrm{mol/L}$	$32.2\mathrm{mL}$	$16.1\mathrm{mL}$
48	12.8%	$2.14\mathrm{mol/L}$	$42.8\mathrm{mL}$	$21.4\mathrm{mL}$

4.b – A condition d'avoir bien manipulé, on trouve en général un peu moins que la valeur fabricant, mais cela dépend de l'ancienneté de la solution de javel.

Ceci est à relier au fait que l'ion hypochlorite n'est en fait pas stable thermodynamiquement dans l'eau de Javel : il réagit avec l'eau dans une réaction à la cinétique lente (temps de demi-réaction de l'ordre de plusieurs mois à 20° C et dans l'obscurité, selon la réaction $ClO^{-} = \frac{1}{2}O_{2} + Cl^{-}$ qui implique les couples ClO^{-}/Cl^{-} et $O_{2}/H_{2}O$).

V Interprétation du protocole à l'aide de diagrammes E-pH

5 – Demi-équations :

$$\begin{cases} \mathrm{ClO}_{(\mathrm{aq})}^{-} + 2\,\mathrm{H}_{(\mathrm{aq})}^{+} + 2\mathrm{e}^{-} = \mathrm{Cl}_{(\mathrm{aq})}^{-} + \mathrm{H}_{2}\mathrm{O}_{(\mathrm{l})} \\ \mathrm{I}_{(\mathrm{aq})}^{-} + 3\,\mathrm{H}_{2}\mathrm{O}_{(\mathrm{aq})} = \mathrm{IO}_{3\,(\mathrm{aq})}^{-} + 6\,\mathrm{H}_{(\mathrm{aq})}^{+} + 6\mathrm{e}^{-} \end{cases}$$

Soit en sommant 3 fois la première et la seconde pour éliminer les électrons :

$$3 \text{ ClO}_{(aq)}^- + I_{(aq)}^- = 3 \text{ Cl}_{(aq)}^- + IO_{3 (aq)}^-.$$

Pour un pH de 11, les domaines de prédominance de $ClO^-_{(aq)}$ et de $I^-_{(aq)}$ sont disjoints. La réaction entre les deux est donc thermodynamiquement favorisée.

6 - Demi-équations :

$$\begin{cases} 2 \operatorname{IO}_{3\,(\mathrm{aq})}^{-} + 12 \operatorname{H}_{(\mathrm{aq})}^{+} + 10 e^{-} = \operatorname{I}_{2\,(\mathrm{aq})} + 6 \operatorname{H}_{2} \operatorname{O}_{(l)} \\ \\ 2 \operatorname{I}_{(\mathrm{aq})}^{-} = \operatorname{I}_{2\,(\mathrm{aq})} + 2 e^{-} \end{cases}$$

Soit en sommant une fois la première et cinq fois la seconde pour éliminer les électrons :

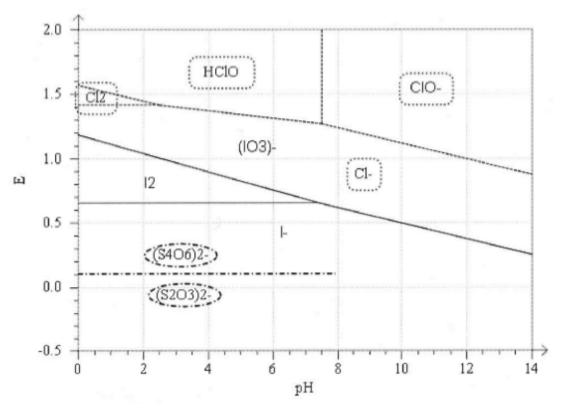
$$2\,\mathrm{IO}_{3\,\mathrm{(aq)}}^{-} + 10\,\mathrm{I}_{\mathrm{(aq)}}^{-} + 12\,\mathrm{H}_{\mathrm{(aq)}}^{+} = 6\,\mathrm{I}_{2\,\mathrm{(aq)}} + 6\,\mathrm{H}_{2}\mathrm{0}_{\mathrm{(l)}}.$$

D'où en simplifiant par deux :

$$\label{eq:ion_sol} \boxed{ {\rm IO}_{3\,(aq)}^{-} + 5\,I_{(aq)}^{-} + 6\,H_{(aq)}^{+} = 3\,I_{2\,(aq)} + 3\,H_{2}0_{(l)}. }$$

D'après le diagramme E-pH, les ions I $^-$ et IO $_3^-$ n'ont plus de frontière commune pour des pH inférieurs à 7.5 environ.

Ainsi si on acidifie la solution en dessous de ce pH, les ions I^- et IO_3^- réagissent entre eux. Ils forment entres autres du diiode I_2 .


Cette réaction est l'inverse de la réaction de dismutation du diiode : elle est appelée une réaction de médiamutation.

7 — On somme les deux équations précédentes encadrées, et on divise le tout par 3, pour trouver

$$ClO_{(aq)}^{-} + 2I_{(aq)}^{-} + 2H_{(aq)}^{+} = Cl_{(aq)}^{-} + I_{2(aq)} + H_{2}O_{(l)}$$
(5)

- $8 I_{2(aq)}$ et $S_2O_{3(aq)}^{2-}$ ont des domaines disjoints. La réaction entre les deux est donc thermodynamiquement favorisée.
- 9 On peut titrer ClO⁻ directement par les ions iodures I⁻ (domaines disjoints), mais il n'y a alors aucun moyen simple de repérer l'équivalence du titrage.

C'est pourquoi on utilise la méthode indirect de titrage, où on "transforme" d'abord les ions ClO¯ à titrer en diiode, qui lui est facile à titrer.

Diagrammes E-pH. La concentration de tracé est de 0.1 mol/L.