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1 Introduction

In a plasma, waves can interact with particles, by transferring energy and momentum from
the field to the particles and vice-versa. In this way, they are also capable of communicating
between the particles themselves: charge separation or currents, originating from particles
moved by waves, may induce changes in fields which produce waves. By this, in a complete
collisionless way, there is a highly non-linear coupling between particles. For instance,
most of the shock waves observed in space are collisionless: without a single collisions
but only via particle-wave-particle interactions, directed kinetic energy of the particles is
transformed into thermal, isotropic kinetic energy.

Waves are also the fundamental bricks of several plasma phenomena, and thinking of
interactions, coupling, turbulence, communication, instabilities, or many other aspects of
plasmas in terms of waves, is often enlightening.

2 Waves in a homogeneous plasma

We have previously introduced ideal MHD waves, and seen that they consist in three
modes: the fast magnetosonic wave, the slow magnetosonic wave, and the Alfvén wave.
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2 2 WAVES IN A HOMOGENEOUS PLASMA

Their dispersion relation is linear (ω/k = cst for a given direction of propagation), and this
linearity is reminiscent from the fact that ideal MHD is a low frequency approximation (ω
far smaller that the cyclotron and plasma pulsations). Consequently, ideal MHD waves
are only valid for low frequencies. At higher frequencies, a new theory must be used.

In this section, we present a short overview of the waves present in a homogeneous
ion-electron plasma, with a Maxwellian distribution function for particle velocities (non-
relativistic), and neglecting the effects of collisions. We give some derivations, but for more
the interested reader may refer to the introductory textbooks by Fitzpatrick (2011), Chen,
Bellan (2006). We believe our approach useful, because plasma waves studies are often
scattered in different chapters depending on the model used, and are seldom presented in
a global view as we do here.

In a homogeneous ion-electron plasma, there are two parameters: the strength of the
magnetic field, and the temperature. The cold and unmagnetized plasma case is fairly
simple, and is presented first. Allowing this plasma to be hot adds some complications,
and the venue of Landau damping. Then, the theory used for a cold and magnetized
plasma remains fairly simple. The theory for a plasma both hot and magnetized, in the
low frequency limit, is MHD. The general case of a hot and magnetized plasma at arbitrary
frequencies requires the use of Vlasov equation with a background and perturbed magnetic
field and is quite complicated, with many possible waves and damping. It is barely touched
on here, and some useful examples may be found in Chen or Fitzpatrick (2011). The
complete theory is treated in the reference book of Stix (1992).

Some vocabulary may be useful. Let us consider a Fourier mode ∝ exp{i(k · x −
ωt)}.The equation ∇ · B = 0 involves k ⊥ B, so that the magnetic field perturbation
vector is always transverse to the wave vector. On another hand, there is no constraint
for the electric field perturbation, and we distinguish several cases:

• A Longitudinal wave has k ‖ E. By definition, an Electrostatic wave has no
inductive electric field, i.e., E = −∇Φ or ∇ ∧ E = 01. This last relation involves
k∧E = 0, so that longitudinal and electrostatic are equivalent. Since ∂tB = ∇∧E =
0, there is no magnetic field perturbation.

• A Transverse wave has k ⊥ E. It involves that ∇ · E = 0, so that there is no
density perturbation. Inductive means that the electromagnetic field is created
only by currents (and not by charges). Thus, ∇ ·E = 0. This last point shows that
transverse is equivalent to inductive.

A notion, somehow opposed to electrostatic, that of electromagnetic waves. It means
that there is both an electric and magnetic field perturbation. Since ∇ · B = 0, the
perturbation in the magnetic field is always transverse, but there is no constraints for the
electric field perturbation, and it can be either longitudinal, transverse, or both (as in the
inertial Alfvén wave or in the X-wave).

Special points in the dispersion relation can be mentionned.

• Resonnance: There is a resonnance when n = ck/ω →∞, or ω/k → 0. The wave
is usually absorbed.

• Cutoff : There is a cutoff when n = ck/ω → 0, or ω/k → ∞. The wave is usually
reflected.

1Forgetting about waves for a moment, we recall that an electrostatic field is a field E that has no
temporal dependence. It is then showed, from Maxwell equation, that ∇∧E = 0 and that it can be derived
from a scalar potential. There could however be time dependent electric field that obeys ∇∧E = 0. This
is the case of our wave, and it is why it is called an “electrostatic” wave, even though it is time dependent.
For properties of electrostatic waves, and in particular energy considerations, see McDonald (2002).



2.1 Cold and unmagnetized plasma 3

It may puzzle the reader that most of the derivations presented here make specific
assumptions. For example in a unmagnetized and hot plasma, we assume longitudinal
waves (E ∧ k = 0) to find Langmuir waves, and transverse waves (E · k = 0) to find
electromagnetic waves. How to be sure that these waves are not coupled, and that there is
no waves that are both transverse and longitudinal? To answer this important question,
one should make derivations without a priori assumptions. The general scheme is usually
as follows: one write down the equations used (1st hypothesis: the model), linearize
around an equilibrium (2nd hypothesis: the equilibrium, often homogeneous), swap to
Fourier space (with an arbitrary wavevector direction k), manipulate equations to end
with a matrix equation of the kind Mq = 0, with q a vector containing relevant variables
(v, B, ...). Non-trivial solutions are obtained if and only if detM = 0, and this gives the
dispersion relation. The different plasma waves, or modes, are found by finding, for each
value of ωi(k) that cancels detM , the associated vector satisfaying Mqi = 0. Each qi,
with its dispersion relation ωi(k), will be an independant mode, and all modes are thus
found2.

2.1 Cold and unmagnetized plasma

Overview

This is the simplest case. The only allowed modes are the electrostatic Langmuir oscillation
and the electromagnetic wave.

• The electrostatic Langmuir oscillation is an oscillation (not a wave, it has a zero
group velocity and does not propagate) at the plasma pulsation. It is electrostatic,
and the oscillation is longitudinal to the wavevector. The pulsation of oscillation is
the plasma pulsation, given by

ω2
P =

∑
s

ω2
ps. (1)

The sum extends over all plasma species s, and the ωps are the individual plasma
pulsations (ωps =

√
nsq2s/(ε0ms)). In the case of an ion-electron plasma, ωP =

ωpe(1 +me/mi)
1/2 ' ωpe.

• The electromagnetic wave is transverse (oscillation of the fields perpendicular to the
propagation direction), and is a standard vacuum electromagnetic wave, but modified
by the response of the plasma3. It is incompressible (n1s = 0 and ∇ · v1s = 0). Its
dispersion relation is

ω2 = k2c2 + ω2
P . (2)

At high frequency, it becomes the electromagnetic wave of vacuum (ω ' kc) because
the plasma has no time to respond. At frequencies below the plasma pulsation, it is
absorbed by the plasma and cannot propagate4.

The dispersion relations of these waves are shown on the upper-right panel of Fig. 2.

2A different approach, develloped in the previous Chapter on MHD waves, consists in writing the system
of equations in a flux-conserving way, when it is possible. The wave modes are then the eigenvectors of
the Jacobian of the flux matrix, and the associated eigenvalues are the wave speeds.

3Such waves propagate in the first layers of the ionosphere, and it is the ionosphere that allows the
transmission of radio waves over large distances on Earth. It is because radio waves are so efficiently
transfered that the very existence of the ionosphere was first inferred, and its properties investigated by
the launching of such waves (Appleton, 1948).

4This property allows to measure plasma number densities: the frequency is risen from low values, and
when the wave is transmitted, it is that ω = ωpe, hence ne.
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Some derivations and more details

The oscillations at ωpe of electrons around the electrostatic field created by the ions in
a cold plasma can be derived from the two-fluid equations by assuming a longitudinal
exitation. This will be done in Sect. 2.2. Here we present a simple derivation from the
equation of motion of an electron. More specifically, if a slab of electron of surface S is
slightly displaced of a length δx from the neutral equilibrium, then the ions where the slab
was at the begining will create a restoring electric field. The ions are in number nSδx,
creating a surface charge density enδx and thus an electric field enδx/ε0. The equation
of motion applyed to a single electron moving with the slab then gives med

2δx/dt2 =
−e(enδx/ε0), and we have the result. The expression of the full plasma pulsation stated in
equation 1 is obtained by allowing the ions to move. Note that in deriving the electric field,
we have assumed that the slab is infinite in parallel extension, so that E is perpendicular
to the slab. If the plasma is of finite extension, then this will not be the case, there will
be fringing electric fields and the oscillations will propagate (Chen).

The electromagnetic wave can be obtained with the two-fluid model, with s = i or e:

∂tns + ns∇ · us = 0, (3a)

msns (∂t + v · ∇)v = qsns(E + v ∧B)−∇Ps. (3b)

The equilibrium (subscript 0) is taken so that for both species, T0, n0 = cst, E0 = B0 =
v0 = 0. We linearize these equations around equilibrium: n = n0 + n1, P = P0 + P1,
v = v1, E = E1, B = B1. We explicitly search for transverse waves, i.e., waves for which
k ·B1 = k ·E1 = 0. Since ∇ ·B1 = 0, the first constraint is always satisfied. The second
implies qin1i + qen1e = ε0∇ · E = 0, so that there is no charge separation. Since ions
and electrons evolve on different time scales, it actually implies no density variation at
all: n1i = n1e = 0. The continuity equation then leads to ∇ · v1s = 0, and the wave is
incompressible. The linearized momentum equation is:

msns0∂tvs1 = qsns0E1 −∇Ps1. (4)

The divergence part of this equation is not interesting because of incompressibility. The
rotational part leads to

msns0∂t∇∧ vs1 = qsns0∇∧E1 = −qsns0∂tB1, (5)

and we note that the pressure disappears. Integrating, multiplying by qs, it yieldsmsqsns0∇∧
vs1 = −q2sns0B1, and summing over species, using J1 =

∑
s n0sqsv1s and the definition of

the plasma pulsation (Eq. 1), we have:

∇∧ J1 = −ε0
∑
s

q2sn0s
ε0ms

B1 = −ε0
∑
s

ω2
psB1 = −ε0ω2

PB1 (6)

We now use Maxwell-Ampère equation, J1 = µ−10 ∇∧B1 − ε0∂tE1, so that:

∇∧ (∇∧B1)− ε0∂t∇∧E1 = −ε0ω2
PB1. (7)

The last step is to replace ∇∧E1 by −∂tB1, to end with

∇2B1 −
1

c2
∂2ttB1 −

ω2
P

c2
B1 = 0. (8)

With Fourier modes, this immediately leads to the dispersion relation ω2 = k2c2 + ω2
P .
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2.2 Hot and unmagnetized plasma

Overview

From the previous case (cold and unmagnetized), one obtains more modes if the temper-
ature is made finite. The dispersion relations of the modes in this case are shown in the
lower-right panel of Fig. 2.

• The Debye length, that was zero at zero temperature, now becomes finite. Physi-
cally, a finite Debye screening comes from thermal fluctuations: at zero temperature
the screening is perfect because particles can adjust so as to cancel the potential ev-
erywhere, but for a finite temperature, thermal motions forbid this perfect screening,
and potentials of the order of T/e can leak out of the screening cloud over a distance
∼ λD, resulting in a finite Debye lentgh below which the plasma is not neutral. This
is indeed seen in the expression λDs =

√
Ts/ms/ωps =

√
ε0Ts/(nsq2s).

• The electromagnetic wave is not modified.

• However, the electrostatic Langmuir oscillation now becomes a wave (non zero group
velocity) due to thermal effects. Its dispersion relation is given by (with vth,e =√
Te/me):

ω2 = ω2
pe + 3k2v2th,e. (9)

• A new mode – the ion sound wave – appears. This mode is a low frequency mode,
electrostatic, longitudinal, and compressible. It propagates because of two effects:

– Thermal motions of the ions can spread the wave, just as for a classical sound
wave, at speed

√
γiTi/mi, with γi the adiabatic index of the ions5.

– The ions communicate via electric fields. Ion packets are positively charged,
but the electrons screen this charge excess and let escape only a potential a
fraction of Te (this is Debye screening of charge excess). The ions are called
back by this potential, and overshoot because of their inertia. The result is a
propagation at velocity

√
Te/mi, because electrons controls the repelling force

and ions the inertia.

With these two effects, the total dispersion relation is:

ω

k
=

(
Te
mi

1

1 + k2λ2D
+
γiTi
mi

)1/2

'
λ�λD

(
Te + γiTi

mi

)1/2

≡ cs

→
λ�λD

ωpi
k

(if Ti = 0),

(10)

with λ = 1/k. If the electron velocity is Te = 0, the screening is perfect and ions
cannot communicate via electric field. If Ti = 0, the thermal spread cannot drive
the wave. Consequently if both temperatures are null, the wave does not exist.

Landau damping

When the temperature is rose from zero, a new phenomena appears: Landau damping.
It consists in the fact that particles travelling at a velocity close to the phase speed of a

5Note however that no collisions are involved here, it is just a spread via kinetic pressure.
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wave can interact with the wave and exchange energy with it, just like a surfer on a wave
is carried by the flow. This is not possible in a cold plasma, because particles have no
velocity at all (except for the very particles moving with the wave), and such particles
just oscillate in the fields with no net energy gain. However, in a hot plasma there are
particles at all speeds (following the velocity distribution function f(v)). A simple picture
is then to consider particles with velocity infinitely close to the phase speed, v = (ω/k)+

or (ω/k)−, and to show that these particles tend to align their velocity with the wave
speed: particles slightly above the phase speed will be decelerated by the wave and thus
give energy to the wave, while particles having a velocity slightly below will be accelerated
and take energy to the wave. Decay or growth of the energy of the wave thus depends on
whether there are more particles just above the phase speed than just below, or vice versa,
i.e., depends on the sign of f ′(v = ω/k). For a Maxwellian distribution function, there are
always more slow particles than fast ones, and the wave is absorbed by the plasma. If the
distribution function has a negative slope somewhere, for example because there is a hot
beam of particles, energy can be given to the waves and lead to an instability. This will
be discussed in the Chapter on instabilities.

Of course, all waves are not subject to Landau damping. There should be enough
particles close to the phase speed, which means that if the phase speed is larger than
the thermal velocity, the damping is weak (simply because for v � vth in a Maxwellian
distribution, there is an exponentially small number of particles contributing to the energy
exchange).

In our case, Langmuir waves exist only for phase speeds at least several times vth,e and
are Landau damped at lower phase speeds (with a rate given below in equation 23). Ion
sound waves are also Landau damped because they are low-frequency, except for Te � Ti
or Zi � 1. Note that waves with a phase velocity higher than c cannot be Landau
damped, because there are no particles matching their phase speed. This is the case of
the electromagnetic waves.

Landau damping is discussed in Sec. ??, by considering particles with v = (ω/k)+

or (ω/k)−, which is also the approach of Bellan (2006). Fitzpatrick (2011) and with
more details Chen consider another viewpoint, and include in their physical explanation
of Landau damping particles close to the phase speed, but not infinitely so. Particles
with a velocity above the wavespeed actually both gain and loose energy, but those which
lose energy have their velocity coming closer to the wavespeed, thus interacting more,
while those which gain energy have their velocity going further away from the wavespeed,
thus interacting less with the wave: on average, particles with a larger velocity than the
wavespeed lose energy. The exact opposite holds for particles having a smaller velocity:
on average, they gain energy at the expense of the wave. The two viewpoints are thus the
same6.

The Landau damping discussed up to now, presented in Sec. ??, and for which the rate
of equation 23 holds, is linear Landau damping. It is derived on the basis of linearized
equations, and involve particles freely sreaming in straight lines. It is valid for small initial
perturbation amplitudes. At higher wave amplitudes, a significant fraction of particles can

6Technically, the differences between the two approaches are subtle and may require some explanations.
First, Chen shows that a particle travelling in a sinusoidal potential field does not, on average, gain
energy. This does not hold in the approach of Bellan and of Sec. ??, because they consider particles with
v = (ω/k)+ or (ω/k)− travelling at the wavespeed, for which a temporal average makes no sense. Second,
Chen insists on the fact that the problem heavily depends on the initial conditions, and that particles with
a non-zero averaged energy gain are those that, at time t, have moved from less than ∼ half a wavelength.
The weight of the contributing particles is then his sinu/u function with u = π/t. The link between Chen
and Bellan is made when the latter takes the limit sinu/u = δ(u) for u → +∞, i.e., t → 0, i.e., particles
contributing only for v = (ω/k)+ or (ω/k)−. In the phase space of figure 7-24 of Chen, Bellan considers
only the particles very near the X-point.
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be trapped in the wells of the wave, and bounce back and forth in it while being carried
by the wave. These particles will exchange energy with the wave, and lead (depending on
the conditions) to a damping of the wave. This is non-linear Landau damping.

Some derivations and more details

We give the demonstration for the electrostatic waves based on two-fluid equations7. In-
sights can be gained concerning the relation between sound waves, Langmuir waves, and
Debye screening, which are all electrostatic modes. The following derivation is inspired
from Bellan (2006).

Using the two-fluid model, we will soon encounter problems with the pressure: there
is no way with a fluid model and its equations of conservation of particle and momentum
to link a density perturbation to the temperature disturbance. One should either use the
energy equation with assumptions on the heat transfer to close the system, or use a direct
hypothesis about the plasma transformation, namely, that it is adiabatic or isothermal.
For an adiabatic transformation, one has P/nγ = cst, so that perturbations in pressure
and density are linked by dP/P = γdn/n, i.e., dP = γTdn (we used P = nT ). For an
isothermal transformation, it is evident that dP = Tdn. We thus generally use dP = γTdn,
with:

• For an isothermal process, γ = 1. Physically, a process is isothermal if the particles
move fast enough to smooth any temperature gradient. If the typicall velocity of the
process is v, it translates into v � vth,s with vth,s the thermal velocity of ions or of
electrons, depending on which species behaves isothermally.

• For an adiabatic process, γ = (N + 2)/N , with N the number of degrees of freedom
of the plasma species s. For particles with no internal degree of freedom, γ = 5/3
in three dimensions, 2 in 2D, 3 in 1D. Physically, a process is adiabatic if it evolves
on a timescale so fast that particles do not have time to transfert heat to smooth
gradients. If the typicall velocity of the process is v, it translates into v � vth,s with
vth,s the thermal velocity of ions or of electrons, depending on which species behaves
adiabatically.

We are now ready to use the equations for the plasma. We will use the conservation
of particle number and of momentum, for each species s, and Poisson’s equation:

∂tns + ns∇ · us = 0, (11a)

msns (∂t + v · ∇)v = qsns(E + v ∧B)−∇Ps, (11b)

∇ ·E = (neqe + niqi)/ε0. (11c)

The equilibrium (subscript 0) is taken so that for both species, T0, n0 = cst, E0 = B0 =
v0 = 0. We linearize these equations around equilibrium: n = n0 + n1, P = P0 + P1,
v = v1, E = E1, and we assume no magnetic perturbation because we specifically search
for electrostatic waves.

We also consider a perturbation at a single frequency, because any solution of the
linearized equations can be built as a sum of such components: E1 = Ẽ1 exp{i(k ·r−ωt)},
and similarly for all other perturbations (subscript 1). As excpected of electrostatic waves,
∇ ∧ E1 = −∂tB1 = 0, so that k ∧ E1 = 0 and the wavevector is longitudinal. We thus
have k ·E1 = kE1.

7Vlasov-Maxwell system leads to the same dispersion relations, but would in addition include Lan-
dau damping. Also, a simpler derivation than presented here (but less precise concerning the dispersion
relations) can be found in Chen.
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The linearized momentum equation is:

msns0∂tvs1 = qsns0E1 −∇Ps1. (12)

The rotational part of this equation simply gives ∇∧ vs1 = 0. The divergence leads to

msns0∂t∇ · vs1 = qsns0∇ ·E1 −∇2Ps1. (13)

We argued that the pressure perturbation is linked to the density perturbation via dP =
γTdn, so that here Ps1 = γsTs0ns1. Using the conservation of particle number, ∂tns1 +
ns0∇ · vs1 = 0, in order to replace the velocity divergence, we have:

ms∂
2
ttns1 = −qsns0∇ ·E1 + γsTs0∇2ns1. (14)

Swapping for Fourier modes, it yields:

msω
2ns1 = qsns0ikE1 + γsTs0k

2ns1. (15)

We thus obtain the density perturbation:

ns1 =
qsns0
ms

ikE1 ×
1

ω2 − γsTs0k2/ms
. (16)

The next and last step is to use Poisson equation, where we insert the above result for the
densities:

ikE1 =
1

ε0

∑
s

q2sns0
ms

ikE1 ×
1

ω2 − γsTs0k2/ms
. (17)

All in all, the dispersion relation is:

1 +
∑
s

−ω2
ps

ω2 − γsTs0k2/ms
= 0. (18)

with the plasma pulsations ω2
ps = q2sns0/(msε0). It can also be written 1 + χi + χe = 0,

with χs the susceptibility of each species defined in the above sum. The limits of the χs
are as follow:

• Adiabatic limit, i.e., ω/k � vth,s (with vth,s =
√
T0s/ms): then γ = 3 because the

compression/dilatation occurs only along the electric field, which is along the wave
propagation, so that N = 1. Then:

χs '
ω2
ps

v2th,sk
2

=
1

λ2Dsk
2
, (19)

with λDs the Debye length.

• Isothermal limit, i.e., ω/k � vth,s (with vth,s =
√
T0s/ms): then γ = 1 and

χs ' −
ω2
ps

ω2

(
1 + 3v2th,s

k2

ω2

)
. (20)

For our waves, three cases are possibles, depending on the ordering between ω/k and
the ion and electron thermal velocities.



2.2 Hot and unmagnetized plasma 9

• Ions and electrons isothermal: ω/k � vth,e, vth,i.
The dispersion relation then reads

k2 = 1 +
∑
s

1/λ2Ds. (21)

This is Debye screening. The dispersion relation has no frequency dependance,
and has for solution k = ±i/λD, resulting in a spatial damping ∝ exp(−x/λD) of
all frequencies ω � kvt = vth,s/λD = ωp. It shows that when ω/k � vth,e, vth,i, the
plasma reaches the steaty-state limit where the perturbations are screened. It also
shows that a species can contribute to screening of a perturbation of phase velocity
vϕ only if its thermal velocity is higher. For example, since usually vth,e � vth,i, ions
cannot screen electron induced perturbations.

• Ions and electrons adiabatic: ω/k � vth,e, vth,i.
The dispersion relation then reads

ω ' ωpe
(

1 +
3

2
k2λ2De

)
. (22)

This is the Langmuir waves.

Some more remarks on these waves may be of interest. At zero temperature, they
are the oscillations, at the plasma frequency, of the electrons in the electrostatic field
created by the ions: the ions cannot follow the quick electron displacements and there
is a restoring electric field; then because of their inertia the electrons overshoot, and
there is an oscillation8. The wave is then non-propagating (dω/dk = 0). When the
electronic temperature is finite, the pressure acts against these oscillations, and the
frequency is slightly corrected with a term that depends on the wavelength: the
group velocity is then small but non-zero. The physical reason is that electrons
have a thermal velocity spread and can propagate information from one layer to
another. At large k (small λ), information propagates at

√
3/2vte, roughly the

thermal velocity. At small k (large λ), the group velocity is much smaller, because
the density gradients are very small and the thermal motions propagate information
very slowly.

Longitudinal waves cannot exist in vacuum, and are allowed only by the dielectric
response of the plasma. They still exist if the plasma is not Maxwellian, but with a
different dispersion relation. However, purely longitudinal waves do not exist if the
distribution is not isotropic.

We note that the assumption of adiabaticity implies, because ω ∼ ωpe, that λ �
λDe: the wavelength is far larger than the Debye length. On another hand, the
motion of a typicall particle moving at the thermal velocity during one wave period
is l = vth,s/ωps = λDs. Particles thus move far less than one wavelength during one
wave period. This is a necessary condition for adiabaticity.

Finally, Langmuir waves are Landau damped. Vlasov theory gives a Landau damping
rate (Lifshitz and Pitaevskii (1981, equ.32.7), Bellan (2006, equ.5.89))

γ =

√
π

8

ωpe
(kλDe)3

exp

(
− ω2

k2v2th,e

)

=

√
π

8

ωpe
(kλDe)3

exp

(
− 1

2(kλDe)2
− 3

2

) (23)

They are damped by the electrons of velocity around the phase velocity, i.e., k · v =
kvϕ = ω ∼ ωpe. Consequently, the damping is efficient only when a lot of electrons

8Note that electron finite mass and non-neutrality are essential here.
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can contribute, that is, when vth,e � ω/k ∼ ωpe/k. This is equivalent to kλDe � 1:
when the wavelength is smaller than the Debye length, the wave is damped. This
can actually be seen on the damping rate: when kλDe � 1 (wavelength large), the
damping rate is exponentially small compared to the frequency and the wave actually
exists. When kλDe ∼ 1, the damping rate is of the order of the frequency and the
wave is not defined anymore. Note that given the functional form of the Maxwellian
distribution, there is an exponentially smaller number of electrons around vϕ when
the temperature dwindles. Ultimately, there is no damping when Te = 0.

• Ions adiabatic, electrons isothermal: vth,i � ω/k � vth,e. The dispersion relation
reads:

ω

k
=

(
Te
mi

1

1 + k2λ2D
+
γiTi
mi

)1/2

. (24)

This is ion sound waves. Some remarks may be useful.

At low frequency or large wavelength (small k), the waves present no dispersion.
At small wavelength (large k), the electrons are not able to correctly screen the ion
induced electric field, and the wave turns into an ion oscillation (no propagation) at
the ion plasma pulsation (if Ti = 0).

Note that if Te = 0, the screening is perfect and no electric field is produced by ion
bunching. The propagation is then only due to ion thermal motion. Conversely, if
Ti = 0, there can still be a propagation because of the electric field created by the
bunching (if Te is finite).

Ion sound waves are fundamentally different from electron plasma waves: ion sound
waves are low-frequency waves with constant phase velocity, and exist only because
of thermal fluctuations; whereas electron plasma waves are zero temperature high-
frequency non-propagating waves, and propagates only because of a small correction
due to thermal motions.

Finally, these waves are strongly Landau-damped (actually, non-existant) if Ti > Te.
In order to exist, one should have at least Ti < Te/5. This is because for Ti ∼ Te,
the phase speed is roughly

√
Ti/mi, which is the thermal ion speed, so that many

ions can contribute to the damping. But when Ti � Te, the phase speed is roughly√
Te/mi: ions cannot contribute to the damping because then vth,i �

√
Te/mi.

2.3 Cold and magnetized plasma

If we come back to the first case (cold and unmagnetized: T = 0, B0 = 0), and let
the background magnetic field be finite, we obtain a more complex situation. First, it
is anisotropic, so that the modes allowed depend on the direction of propagation relative
to B0. Several new characteristic pulsations appear, and are a mix between the plasma
pulsations and the cyclotron pulsations. They are defined in section 2.6. The two simplest
cases are for parallel and perpendicular propagations (the two upper-left diagrams of
Fig. 2).

Parallel propagation

• The electrostatic Langmuir oscillation is longitudinal, so that the oscillations are
parallel to the background magnetic field. It is thus unchanged.

• The electromagnetic wave, which was of arbitrary transverse polarization, is split in
two branches: one which is circularly left polarized and starts from ωL, the other
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circularly right polarized and starting from ωR
9.

• Two new branches appear: one from ω = 0 to ωci is left polarized and absorbed by
ion cyclotronic motion as ω → ωci ; the other from ω = 0 to ωce is right polarized
and absorbed by electron cyclotronic motion as ω → ωce.

These absorptions occur when the frequency of the circular wave matches the gy-
rofrequencies of either the ions or the electrons.

The four branches now present (see Fig. 2) are grouped two by two according to whether
they are circularly right or left polarized. They are called L and R modes. The interme-
diate frequency part of the R-wave is called a whistler wave10.

Perpendicular propagation

• The electromagnetic wave is transverse, so that when it propagates perpendicularly
to B0, it involves oscillations parallel to B0. It is thus unchanged. It is now called
the O-mode, or ordinary mode.

• However, the electrostatic Langmuir oscillation is modified and results in new branches,
grouped under the name X-wave (or extraordinary wave). They are drawn in orange
on the figure.

For ω → ωuh, there is a resonnance and the wave is absorbed. It is actually converted
into the electrostatic upper-hybrid oscillation of the electrons perpendicular to B0.
The same occurs for ω → ωlh, where the wave is converted into the electrostatic
lower hybrid ion oscillation (see Chen).

Oblique propagation

When the wavevector makes an arbitrary angle with B0, the X, O, L and R waves
become coupled. There are however always at most two modes allowed, for example a
X-R-coupled mode and a O-L-coupled mode, or a X-L-coupled mode and a O-R-coupled
mode. Each mode can have several branches (for example the X-mode has 3 branches, the
O-mode one, etc). The exact situation depends on the respective values of ω, ωpe and ωce,
and is summed up in the famous CMA diagram. See for example Bellan (2006) or Chen.

2.4 Hot and magnetized plasma in the low frequency limit

Overview

By low frequency, we mean ω � ωci. The theory used is ideal MHD, and we have already
described these waves. Their dispersion relation is linear (ω/k = cst) and only depends
on the orientation of the wavevector with respect to the magnetic field. This is summed
up in the the two lower-left diagrams of Fig. 2.

These modes are:
9The fact that these branches have different phase velocities is at the origin of Faraday rotation: when

traveling through the plasma, the polarization of a linearly polarized wave turns from an angle. The
rotation angle is proportional to the magnetic field, and allows in some cases to measure its strength.

10Whistler waves were first observed as disturbances during radio transmissions, from where they get
their name. They are produced by disturbances in the upper ionosphere (lightning), and propagate parallel
to the magnetic field of the Earth in the magnetosphere, up to the ground in the polar regions. They are
a source of information on the state of the magnetosphere and are analyzed by some polar observatories.
They are also of importance in various domains, such as magnetic reconnection or turbulent transport in
accretion disks (via the magnetorotational instability).
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• The fast magnetosonic wave, also named fast wave or compressional Alfvén wave.

As T → 0, its phase speed is equal to the Alfvén velocity and one recovers for
perpendicular propagation the low-frequency part of the low-frequency branch of
the X-wave (see the black arrows on the figure), and for parallel propagation the
low-frequency part of the low-frequency branch of the R and L waves.

As B0 → 0, its phase speed is equal to the sound speed and one recovers the low
frequency part of the ion sound wave.

• The Alfvén wave, also named shear Alfvén wave or intermediate wave. This wave
is transverse (V1 · k = 0), not compressible (ρ1 = P1 = 0), and B1 ∝ V1. It is
not perturbed by temperature effects, so that it does not change when T → 0. It
is absent for perpendicular propagation, and for parallel propagation it becomes
degenerate with the fast wave. When B0 → 0, it disappears.

• The slow magnetosonic wave, also named slow wave. If T → 0 or B0 → 0, it
disappears.

Some derivations and more details

In order to illustrate what we meant in the introduction by finding all the modes allowed
by the model at once, we derive the different MHD waves. We mostly follow the work of
Fitzpatrick (2011). The set of model equations is:

∂tρ+∇ · ρV = 0 (25a)

ρ∂tV + V · ∇V = −∇P + µ−10 (∇∧B) ∧B (25b)

− ∂tB +∇∧ (V ∧B) = 0 (25c)

P/ργ = cst. (25d)

We linearize around an equilibrium B0, ρ0, P0 = cst, V0 = 0, and introduce perturbed
quantities with a subscript 1, described by Fourier modes ∝ exp{i(k · x − ωt)}. The
linearized equations are then

∂tρ1 + ρ0∇ · V1 = 0 (26a)

ρ0∂tV1 = −∇P1 + µ−10 (∇∧B1) ∧B0 (26b)

− ∂tB1 +∇∧ (V1 ∧B0) = 0, (26c)

and the last equation gives P1/P0 = γρ1/ρ0. With Fourier modes, this yields:

− iωρ1 + iρ0k · V1 = 0 (27a)

− iρ0ωV1 = −ikP1 + µ−10 (ik ∧B1) ∧B0 (27b)

iωB1 + ik ∧ (V1 ∧B0) = 0. (27c)

We can thus express:

ρ1 = ρ0k · V1/ω (28a)

ωB1 = −k ∧ (V1 ∧B0) = (k · V1)B0 − (k ·B0)V1, (28b)

P1 = γP0k · V1/ω. (28c)

These three expressions can then be inserted into the equation of motion (Eq. 27b). It
leads to a vector equation involving V1 only, as well as equilibrium quantities and the
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wavevector. Assuming that B0 = B0ẑ and that k lies in the x-z plane, and denoting the
angle between them by θ, this equation can be written in matrix form:ω2 − k2v2A − k2v2s sin2 θ 0 −k2v2s sin θ cos θ

0 ω2 − k2v2A cos2 θ 0
−k2V 2

s sin θ cos θ 0 ω2 − k2v2s cos2 θ

VxVy
Vz

 = 0. (29)

We defined the Alfvén velocity vA = B0/
√
µ0ρ0, and the sound speed vs =

√
γP0/ρ0. We

also define c2ms = v2A + v2s . Let us denote the above matrix by M . There are non zero
solutions only if detM = 0 for some value of ω, and this gives the dispersion relation. We
thus have:

(ω2 − k2v2A cos2 θ)(ω4 − ω2k2c2ms + k4v2Av
2
s cos2 θ) = 0. (30)

The first root, ω = kvA cos θ, is the dispersion relation for Alfvén waves. When
ω satisfy this relation, the vector for which MV = 0 is V = (0, Vy, 0). It implies that
this wave is transverse (V1 · k = 0), that it is not compressible (ρ1 = P1 = 0), and that
B1 ∝ V1 ∝ ŷ.

The second root is given by ω = kv+, with

v+ =

{
1

2

[
c2ms +

√
c4ms − 4v2Av

2
s cos2 θ

]}1/2

. (31)

This is the fast magnetosonic wave dispersion relation. When ω take this value, the
vector such that MV = 0 is of the form V = (Vx, 0, Vz) with the two components linked
by the ratio −M31/M11 (or equally −M33/M31. It thus implies a finite P1 and ρ1, as well
as an arbitrary polarization.

The last root is given by ω = kv−, with v− similar to v+ but with a minus in front of
the
√
· of equation 31. This is the slow magnetosonic wave. The associated vector is

again of the form V = (Vx, 0, Vz), with the same consequences.

2.5 Hot and magnetized plasma at arbitrary frequency

This case requires the use of kinetic theory and is much more complex. Landau damping is
present as in the unmagnetized and warm case, for the absorption of waves with E1 ∝ B0.
In addition, waves with a circular polarization are also damped when their frequency is
close to harmonics of the cyclotron frequencies: ω − ωce . kzvth,e for the right-handed
waves, and for ω − ωci . kzvth,i for the left-handed waves.

The physics of this cyclotron damping is similar to that of the longitudinal waves
Landau damping (but with differences, see Chen). Here, the resonnance occurs when the
wave polarization rotates close to the harmonics of the cyclotron pulsation of the particles
of species s: on average, particles gyrating faster than the waves are slowed down and
give energy to the wave, particles gyrating slower than the waves are accelerated and take
energy to the wave. For a Maxwellian plasma, there are more particles going slowly, so
that the wave is damped.

The appearance of all these resonnances allows for energy transfert from particles to
waves at much more frequencies than in the unmagnetized case. In addition, cyclotron
damping is more robust than unmagnetized Landau damping, and can happen also if the
slope of the particle distribution function is not negative (Chen). This is important for
example in fusion devices, where the plasma is heated by launching a given kind of waves
in it.

Parallel propagation
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• The electrostatic wave of the hot and unmagnetized case remains the same for paral-
lel propagation, essentially because it implies oscillations parallel to B0, undisturbed
by B0. It is identically Landau-damped whenever ω/k . vth,e,.

• The right and left-handed modes of the cold and magnetized case are again present
(the blue mode and red mode of figure 2), with roughly the same properties. The
main difference is that these modes are now cyclotron-damped when approching the
cyclotron resonnances, i.e., for ω − ωce . kzvth,e for the right-handed wave, and for
ω − ωci . kzvth,i for the left-handed wave.

We remark that these absorptions were also found with the cold-magnetized plasma
model, but with a zero width (they occured exactly at ω = ωce and ω = ωci), while
here the absorption width is finite.

Perpendicular propagation

• The electromagnetic or O-mode of cold plasma theory is still present, but modified
by the appearance of cyclotron resonnances at ω = nωcs (with n ∈ Z∗). The wave is
cyclotron-damped at these frequencies11.

The situation is however not so simple, because the weight (or the efficiency) of these
resonnances depends on the temperature of the plasma12, and, more specifically, on
the ratio of the thermal Larmor radius of the particles to the wavelength, k⊥rcs. This
is because the resonnances are a finite Larmor effect (FLR), i.e., due to the variation
of the wave phase across a particle gyration. The weight of the nth resonnance in
the dispersion relation is (k⊥rcs)

|n|. If k⊥rcs → 0, we are in the cold limit, and the
resonnances disappear. For small but finite k⊥rcs, only the low-order resonnances
persist. At k⊥rcs ∼ 1, all resonnances contribute equally.

Since rci > rce, ion resonnances are more important than electron resonnances.

• The X-mode is still present, but as we explain here, affected by cyclotron resonnances
(especially for large wavenumbers for which k⊥rcs is not small) and coupled to other
modes. The other modes in question are called Bernstein waves, and appear only for
T 6= 0. They can be derived in the electrostatic approximation, valid for small phase
speeds ω/k⊥ � c. There are electron Bernstein waves (for which the ion physics has
little importance), and ion Bernstein waves (for which the electron physics play a
role). Each mode has several branches, each asymptoting nωcs at large k. At large
phase speed ω/k⊥ ∼ c (small k⊥), electromagnetic effects become important and
these modes are no longer purely electrostatic. This is where they couple with the
X-mode of the cold case.

The full analysis leads to a single mode, shown in figure 1.

There are also more general oblique cyclotronic modes.

We do not elaborate more on this topic. Some elements are discussed in Chen or in
Fitzpatrick (2011). The whole theory is contained in Stix (1992).

2.6 Formulary

We give the expressions for the pulsations and velocities appearing in Fig. 2.

11For strictly perpendicular propagation this is not strictly a cyclotron damping, but a conversion into a
non-propagating oscillation, as was the case for the resonnance and absorption derived in the fluid model
at ωuh and ωlh. For not strictly perpendicular propagation, cyclotron damping does happen.

12This is excpected, because the plasma temperature is a new parameter compared to the cold case, and
the dispersion relations should obviously depend on it
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wave, ω k⊥<<c

Electromagnetic corrections,
ω k⊥~c

Figure 1: Full line: Dispersion relation of electron Bernstein waves, when the coupling
with the X-mode at small k is taken into account. From Fitzpatrick (2011). The relative
position of ωL, ωuh, ωR with respect to the cyclotron harmonics is not always as such, and
depends on ωce/ωpe. Dashed line: X-mode of the cold plasma.

Pulsations of the cold wave theory

The pulsations appearing in the theory of cold magnetized plasmas are all a mix between
the electron and ion plasma pulsations (collective plasma effects) and the electron and ion
cyclotron pulsations (individual particle dynamics).

Lower hybrid pulsation:

ω2
lh =

ω2
ceω

2
pi + ω2

ceω
2
ci + ω2

peω
2
ci

ω2
pe + ω2

ce

. (32)

Upper hybrid pulsation:

ωuh =
(
ω2
pe + ω2

ce

)1/2
. (33)

Right and left cutoff pulsations (where all pulsations are taken positive):

ωL =
1

2
[(ω2

ce + 4ω2
pe)

1/2 − ωce],

ωR =
1

2
[(ω2

ce + 4ω2
pe)

1/2 + ωce].

(34)

We have the ordering ωR > ωuh > ωpe > ωL, and also ωL > ωuh for an ion-electron
plasma below ωce/ωpe = 30. See figure 3 for details.

Velocities of MHD waves

Within the MHD description, all waves have a linear dispersion relation, so that it is
enough to just give the phase velocity w/k.

The non-relativistic Alfvén velocity is given by

vA =
B√

4πnemi
. (35)
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The magnetosonic velocity appearing in the MHD part of figure 2 (lower-left part) is
defined as:

cms =
(
v2A + c2s

)1/2
, (36)

where vA is defined by equation 35, and cs is the speed of the ion sound wave, given by

cs =

(
Te + 3ZTi

mi

)1/2

=

(
1

2

me

mi
v2th,e +

3

2
Zv2th,i

)1/2

. (37)
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Figure 2: Different modes propagating in a homogeneous plasma. The black arrows show
how the modes evolve when the temperature T or the background magnetic field B0 goes
to zero. For example, to go from the lower-right to the upper-right diagram, one has to
make T → 0. The modes of the lower-right diagram then evolve according to the black
arrows of this diagram, which act to transform it into the upper-right diagram. In the
MHD part, the magnetic field is directed along z.
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