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Ce qu’il faut connaître
(cours : I)

I1 Si un système linéaire invariant reçoit en entrée une grandeur du type e0 cos(ωt + ϕ0), quelle est la forme de la
grandeur de sortie ?

I2 Comment est définie la fonction de transfert d’un filtre dont l’entrée est e(t) et la sortie s(t) ? Son gain ? Son gain
en décibel ?

I3 Comment est définie la pulsation de coupure d’un filtre ? Et sa bande passante ?

(cours : II)

I4 Savoir que l’on peut décomposer un signal périodique (période T0, pulsation ω0) en une somme de fonctions sinu-
soïdales.
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Dans cette décomposition, qu’est-ce qui est appelé le fondamental ? Et les harmoniques ? Quelles sont leurs pulsa-
tions ?

Faire un schéma de l’allure d’un spectre (d’un signal créneau par exemple). Où trouve-t-on la valeur moyenne ?

I5 Quelle partie d’un diagramme de Bode a-t-elle pour action de dériver le signal d’entrée ?

Et d’intégrer le signal d’entrée ?

Que faut-il faire pour ne garder que la valeur moyenne d’un signal périodique ?

Ce qu’il faut savoir faire
(cours : I)

I6 Exprimer la fonction de transfert d’un circuit électronique ou d’un système mécanique. → EC1, EC1bis

I7 Calculer le module et l’argument de la fonction de transfert, les représenter graphiquement. → EC2

I8 Tracer le diagramme de Bode associé à une fonction de transfert. → EC3

I9 Étant donné un signal harmonique en entrée, en déduire l’expression du signal de sortie (la fonction de transfert
étant donnée). → EC1

I10 Réaliser l’étude asymptotique d’un filtre (prévision du comportement à basse et haute fréquence). → EC4

(cours : I, annexes)

I11 Étant donnée l’expression canonique d’un filtre passe-bas du 1er ou du 2nd ordre, passe-haut du 1er ordre, ou passe-
bande du 2nd ordre, savoir :

– Réaliser l’étude asymptotique et tracer l’allure du diagramme de Bode.

– Exprimer le gain en décibel et l’argument de H.

– Retrouver les expressions des pulsations de coupures.

– Pour le cas de l’ordre 2, retrouver la condition de présence d’une résonance.

– Voir pour cela tous les exemples des annexes ; et le TD II, III.

(cours : II)

I12 Prédire l’action d’un filtre sur un signal périodique. → TD V

I13 Établir le gabarit d’un filtre en fonction d’un cahier des charges. → TD IV

Exercices de cours

Exercice C1 – Exprimer la fonction de transfert d’un système mécanique

On considère une massem attachée à un ressort de longueur à
vide l0 = 0 et de constante de raideur k. On prend en compte
les frottements via une force de frottement ~f = −λ~v.
L’extrémité gauche du ressort est forcée par un mouvement
d’oscillation selon yA(t) = A cos(ωt). y

y~e

0 y

masse mM

yA

oscillations forcées

On admet que l’application du PFD mène à l’équation suivante sur y(t) : ÿ +
λ

m
ẏ +

k

m
y =

k

m
yA(t).

1 - En déduire l’expression de la fonction de transfert H(ω) =
y

y
A

.

Exercice C1bis – Exprimer la fonction de transfert d’un circuit électronique

On considère le circuit RC ci-contre.

1 - Donner l’expression de la fonction de transfert de ce filtre.

2 - On considère le signal d’entrée e(t) = E0 cos(ωt). Comment s’écrit le signal de sortie (en
fonction de E0, ω, t, |H| et arg(H)) ?

R

C se

Filtrage 2 / 11 Raoul Follereau | PTSI



Exercice C2 – Calculer le module et l’argument de la fonction de transfert, les représenter graphiquement

On reprend le cas du circuit RC ci-dessus, pour lequel H(ω) =
1

1 + jRCω
. On pose ω0 = 1/RC.

1 - Donner les expressions du gain du filtre et de l’argument ∆ϕ de H.

2 - Tracer l’allure de G(ω) et de ∆ϕ(ω) (en échelle linéaire).

Exercice C3 – Tracer le diagramme de Bode associé à une fonction de transfert

On reprend le cas du circuit RC ci-dessus, pour lequel H(ω) =
1

1 + jω/ω0
.

1 - Donner un équivalent de H en ω = 0 et en ω = +∞.

2 - En déduire les équations des asymptotes dans le diagramme de Bode en gain et en phase (donc en échelle log pour
la fréquence).

3 - Tracer l’allure du diagramme de Bode en amplitude et en phase, avec en abscisse ω/ω0 (échelle log).

Exercice C4 – Réaliser l’étude asymptotique d’un filtre

Pour le système ci-contre :

1 - Étudier le comportement asymptotique sans calcul.

2 - En déduire la nature du filtre.

R

C se

Exercice C5 – Filtre passe-haut du premier ordre

On considère le filtre ci-contre ?

1 - Exprimer la fonction de transfert et la mettre sous la forme H(ω) =
j
ω

ω0

1 + j
ω

ω0

.

Dans la suite on pose x = ω/ω0.

C
R se

3 - Dans le diagramme de Bode en amplitude : établir l’expression de l’asymptote basse fréquence. Quelle est sa pente,
et par quelle valeur passe-t-elle pour x = 1 ?
Etablir également l’expression de l’asymptote haute fréquence.
En déduire l’allure du diagramme de Bode en amplitude.

4 - Faire le même travail pour le diagramme de Bode en phase.

5 - Enfin, exprimer la pulsation de coupure ωc.

Cours

I – Généralités sur les filtres

1 – Qu’est-ce qu’un filtre ?

Définition

Filtre : C’est un système qui permet de sélectionner des signaux utiles, sur un critère de fréquence.

On étudie ici uniquement des filtres linéaires, donc réalisés par un système linéaire invariant (cf chapitre précédent).

Les exemples d’applications sont très nombreux :

• En électronique, un filtre sélectif permet de supprimer du bruit parasite, de mettre en forme un signal, d’effectuer
des opérations de traitement. Par exemple une chaine hifi doit envoyer les fréquences graves, intermédiaires ou aigues
vers chacun des haut-parleurs dédiés. Une radio ou un téléphone doit sélectionner la fréquence à recevoir. Etc...

• En mécanique, un amortisseur agit comme un filtre qui atténue les hautes fréquences.

• En optique, un filtre permet de sélectionner certaines longueurs d’onde seulement.
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2 – Action sur les signaux harmoniques et périodiques

On note comme au chapitre précédent e(t) un signal d’entrée, s(t) le signal de sortie associé, et e(t) sys−−→ s(t) l’action du
filtre.

Rappels :

I Par rapport à e(t), le signal de sortie est de même pulsation, mais d’amplitude et de déphasage différents :

e(t) = E0 cos(ωt+ ϕe)
sys−−→ s(t) = S0 cos(ωt+ ϕs).

3 – Fonction de transfert

Rappels : On se place en RSF.

 1 Le signal e(t) = E0 cos(ωt+ ϕe) est représenté par e(t) = E0ejωt avec E0 = E0ejϕe .

 2 Le signal s(t) = S0 cos(ωt+ ϕs) est représenté par s(t) = S0ejωt avec S0 = S0ejϕs .

Définition : fonction de transfert d’un filtre

Fonction de transfert d’un filtre :

H(ω) =
s(t)

e(t)
=
S0

E0

.

On définit le gain G(ω) = |H| et le gain en décibel GdB(ω) = 20 log(|H|).

Propriétés

La fonction de transfert contient toute l’information sur le filtre, car on a :

I |H(ω)| =
∣∣∣∣se
∣∣∣∣ =

S0

E0
→ permet de connaître l’amplitude de sortie S0.

I arg (H(ω)) = arg
(
s

e

)
= ϕs − ϕe → permet de connaître la phase de sortie ϕs.

 3 Détail des calculs :

Remarquons d’abord que :
s

e
=
S0ejωt

E0ejωt
=
S0

E0

– |H(ω)| =
∣∣∣∣se
∣∣∣∣ =
|S0|
|E0|

=
S0

E0

– arg (H(ω)) = arg
(
s

e

)
= arg

(
S0

E0

)
= argS0 − argE0 = ϕs − ϕe

 4 Exemple de calcul de fonction de transfert : EC1 et EC1bis.

4 – Comportement en fréquence

On peut tracer G(ω) ou arg(H) en fonction de ω pour avoir une idée du comportement du filtre.

 5 Exemple pour le filtre RC : EC2

Comme la pulsation ω peut varier sur de grands intervalles (de quelques Hz à plusieurs MHz par exemple), on préfère
souvent utiliser une échelle logarithmique. On parle alors de diagramme de Bode.

Définition

I Le diagramme de Bode en gain est le tracé de GdB en fonction de log ω (ou de log f).

I Le diagramme de Bode en phase est le tracé de arg(H) en fonction de log ω (ou de log f).

I Sur ces diagrammes, une décade représente la multiplication par 10 de ω (ou de f).

 6 Exemple pour le filtre RC : EC3
Attention avec les échelles. Ci-dessous pour le même filtre :
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– Tracé de G en fonction de ω/ω0, échelle linéaire en abscisse et ordonnée.

– Tracé de GdB en fonction de ω/ω0, mais avec une échelle logarithmique en abscisse.

En abscisse il n’y a pas de 0, il est à l’infini vers la gauche.

En ordonnée GdB = 20 logG donc c’est aussi une sorte d’échelle logarithmique, mais pour G.

On a donc une échelle log-log, c’est dans ce type de diagramme que les asymptotes vont souvent être des droites.

0 25 50 75 100

0

0.5

1

x = ω/ω0

G
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−10

−20

x = ω/ω0

G
dB
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B
)

Interprétation de GdB. GdB = 20 log(S0/E0) donc :

– GdB = 0 ⇔ S0 = E0

– GdB > 0 ⇔ S0 > E0, amplification

– GdB < 0 ⇔ S0 < E0, atténuation

5 – Étude asymptotique d’un filtre

Avant même de calculer ou de tracer la fonction de transfert, on peut prédire simplement le comportement du filtre à
basse fréquence (ω → 0) et à haute fréquence (ω → +∞) en remplaçant bobines et condensateurs par leur comportement
limite.

 7 À basse fréquence, bobine =fil et condensateur =int. ouvert

 8 À haute fréquence, bobine =int. ouvert et condensateur =fil

 9 Exemple sur le circuit RC : EC4

Type de filtre
Ces études asymptotiques permettent de déterminer facilement le type de filtre. Par exemple :

I Passe-bas : coupe les hautes fréquences I Passe-haut : coupe les basses fréquences

I Passe-bande : coupe les hautes et basses fréquences

I Coupe-bande : coupe des fréquences intermédiaires, mais ni les HF ni les BF

6 – Pulsation de coupure et bande passante à -3 dB

Définition

La bande passante est l’ensemble des pulsations qui “passent” sans être trop atténuées, c’est-à-dire qu’un signal
en entrée ayant une pulsation ω comprise dans la bande passante n’est pas trop atténué.

Les pulsations de coupures sont les pulsations qui délimitent la bande passante.

Par convention, ce sont celles pour lesquelles Gmax est divisée par
√

2 :

ωc est telle que G(ωc) =
Gmax√

2
.

Si l’on passe au log, comme 20 log(
√

2) ' 3, la définition devient :

ωc est telle que GdB(ωc) = GdB,max − 3 dB.

Il peut y avoir une ou deux pulsations de coupures.
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 10 Exemple sur le circuit RC :

G(ω) =
1√

1 + ω2/ω2
0

donc le maximum est Gmax = 1.

On cherche donc ωc tel que
1√

1 + ω2
c/ω

2
0

=
1√
2
. Ceci implique 1 + ω2

c/ω
2
0 = 2, et donc ωc = ω0 .

La pulsation de coupure est donc donnée par ω0.

II – Action d’un filtre sur un signal périodique

1 – Aspect temporel : dérivateur, intégrateur, moyenneur

Propriété : dérivateur ⇔ +20 dB/déc

Si un filtre possède dans une certaine gamme fréquence de son diagramme de Bode, une asymptote de pente +20
dB/déc, alors il aura un comportement dérivateur sur cette gamme de fréquence.

Démonstration :

Dériver ⇔ s = K × jω e ⇔ H =
s

e
= Kjω ⇔ GdB = 20 log |H| = 20 log(Kω) = 20 logK + 20 logω︸ ︷︷ ︸

pente +20dB/déc

Exemple :

C
R se

aaaa

spectre de e(t)

aaaa

Propriété : intégrateur ⇔ -20 dB/déc

Si un filtre possède dans une certaine gamme fréquence de son diagramme de Bode, une asymptote de pente -20
dB/déc, alors il aura un comportement intégrateur sur cette gamme de fréquence.

Démonstration :

Intégrer ⇔ s =
K

jω
e ⇔ H =

s

e
=
K

jω
⇔ GdB = 20 log |H| = 20 log

K

jω
= 20 logK − 20 logω︸ ︷︷ ︸

pente -20dB/déc

Exemple :

R

C se

aaaa

spectre de e(t)

aaaa
Propriété : moyenneur ⇔ passe-bas

Un filtre passe-bas de fréquence de coupure fc très petite devant la fréquence fe du signal e(t) d’entrée aura un
effet moyenneur.

Démonstration :
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e(t) = c0 +
∑+∞

n=1 cn cos(2πnfet+ ϕn)︸ ︷︷ ︸
composante de fréquence n×fe

tous les cosinus sont coupés par le filtre passe-bas car ils sont de fréquence grande devant fc (et un passe bas coupe tout
ce qui est au delà de fc. Donc en sortie il ne reste que s(t) = c0, ce qui est bien la moyenne de e(t).

Exemple :

R

C se

aaaa

spectre de e(t)

aaaa

2 – Décomposition de Fourier d’un signal périodique

Tout signal se décompose comme somme de signaux harmoniques, dont l’amplitude et la phase à l’origine de chacun est
donnée par le spectre du signal.

On considère un signal périodique e(t), de période Te et pulsation ωe =
2π

Te
.

Il peut se décomposer en série de Fourier : e(t) = c0 +

+∞∑
n=1

cn cos(nωet+ ϕn).

Définitions (rappels sur le spectre)

I c0 est la valeur moyenne du signal, ou encore sa composante continue.

I Le n-ième terme est appelé l’harmonique de rang n, sa pulsation est nωe (multiple entier de ωe).

I L’harmonique n = 1 est de même période que le signal e(t), il s’agit du fondamental. ωe est aussi
appelée pulsation fondamentale.

On rappelle que pour chaque harmonique, on a cn cos(nωet+ ϕn)
sys−−→ c′n cos(nωet+ ϕ′n).

On regarde donc individuellement comment chaque harmonique est transformée par la fonction de transfert.
Dit autrement, on a :

e(t) = c0 +

+∞∑
n=1

cn cos(nωet+ ϕn)
sys−−→ s(t) = c′0 +

+∞∑
n=1

c′n cos(nωet+ ϕ′n),

avec c′n = cn × |H(nωe)|, et ϕ′n = ϕn + arg(H(nωe)).

On rappelle que la valeur moyenne d’un signal s(t) et sa valeur efficace ont été définis au chapitre 4.0.

3 – Action d’un filtre sur un signal, méthode

Exemple : action d’un passe-bas

• On considère un filtre passe-bas du 1er ordre, de pulsation de coupure ω0 = 1,0× 103 rad/s.

• On envoie en entrée un signal créneau de pulsation ωe (et période Te = 2π/ωe).

Exemple dans le cas où ωe ' ω0 :
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 11 Prédire la forme du signal de sortie si ωe � ω0.

 12 Prédire la forme du signal de sortie si ωe � ω0.

Exemple : action d’un passe bande sélectif

 13 On considère un signal créneau en entrée d’un filtre passe-bande
sélectif. Prédire la forme du signal de sortie si la bande passante est centrée
sur l’harmonique numéro 5.
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4 – Gabarit d’un filtre

Le gabarit d’un filtre est le diagramme de Bode du filtre sur lequel apparaissent les zones de pulsations à laisser passer ou
à atténuer.

La figure ci-dessous donne des exemples de gabarits des filtres classiques. Le tracé du gain doit éviter les zones grisées.
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10−3 10−2 10−1 100 101 102 103

0

−10

−20

(d) Filtre coupe-bande ou filtre réjecteur

10−3 10−2 10−1 100 101 102 103

0

−10

−20

(c) Filtre passe-bande
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Annexe : filtres du 1er et 2nd ordre

Remarque : rien n’est à connaître par cœur dans ces parties III et IV, mais avoir déjà rencontrés ces exemples vous permettra
de mieux comprendre les exercices. Les formes canoniques seront données.

III – Filtres du 1er ordre

1 – De l’équation différentielle à la fonction de transfert

Un filtre du premier ordre est régi par une équation du premier ordre sur s(t) :
ds
dt

+ a s(t) = b
de
dt

+ c e(t).

On passe en complexes, sachant que dériver revient à multiplier par jω :

jωs+ a s = bjωe+ c e ⇒ H =
s

e
=
bjω + c

jω + a
.

2 – Filtre passe-bas du 1erordre

La forme canonique pour ce filtre est : H(ω) =
H0

1 + j
ω

ω0

.

H0 est appelé gain statique (car c’est le gain pour ω = 0).

Exemple : le circuit RC série lorsque l’on prend la tension aux bornes du condensateur (que l’on a étudié juste au dessus).

Cf EC3 pour l’étude asymptotique. On trouve que l’asymptote hautes fréquences de la courbe de gain a pour pente −20
dB/décade.

Tracés pour H0 = 1 :
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∆
ϕ
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ad

)

−π/2

−π/4

Expression du gain et du déphasage :

Cf EC2 : on trouve G = |H(ω)| = |H0|√
1 + ω2/ω2

0

et un déphasage ∆ϕ = arg(H(ω)) = argH0 − arctan
ω

ω0
.

Pulsation de coupure : cf page précédente, G(ωc) =
Gmax√

2
donne ωc = ω0.

3 – Filtre passe-haut du 1er ordre

La forme canonique pour ce filtre est : H(ω) = H0

j
ω

ω0

1 + j
ω

ω0

.

Exemples : circuit RC série lorsque l’on prend la tension aux bornes de la résistance, ou RL série lorsque l’on prend la
tension aux bornes de la bobine.

a/ Étude asymptotique (pour H0 = 1)

Cf EC5 : on trouve que l’asymptote basse fréquence est de pente +20 dB/décade, et celle à hautes fréquences est de pente
nulle.

Pour les tracés, H0 = 1 :
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Expression du gain et du déphasage :

On trouve G = |H(ω)| = |H0|ω/ω0√
1 + ω2/ω2

0

et un déphasage ∆ϕ = arg(H(ω)) = argH0 +
π

2
− arctan

ω

ω0
.

Pulsation de coupure : G(ωc) =
Gmax√

2
donne ωc = ω0.

IV – Filtres du 2nd ordre

1 – De l’équation différentielle à la fonction de transfert

Un filtre du second ordre est régi par une équation du type

d2s
dt2

+ a
ds
dt

+ b s(t) = c
d2e
dt2

+ d
de
dt

+ f e(t).

La fonction de transfert associée est obtenue en passant en complexes :

(jω)2s+ajωs+b s = c(jω)2e+djωe+f e ⇒
(
(jω)2 + ajω + b

)
s =

(
c(jω)2 + djω + f

)
e ⇒ H =

s

e
=
c(jω)2 + djω + f

(jω)2 + ajω + b
.

2 – Filtre passe-bas du 2ndordre

La forme canonique pour ce filtre est : H(ω) =
H0

1 +
1

Q

jω
ω0

+

(
jω
ω0

)2 .

H0 est appelé gain statique.

Exemple : circuit RLC série lorsque l’on prend la tension aux bornes du condensateur. (c’est l’étude de la résonance en
tension du RLC série du chapitre précédent.)

Cf TD pôur l’étude asymptotique.
Ci-dessous, H0 = 1.
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Q < 1/
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Expression du gain et du déphasage (ici pour H0 = 1) : cf chapitre 3, TD 3, calculs identiques. Par exemple :

G(ω) = |H| = 1√(
1− ω2

ω2
0

)2
+
(

ω
Qω0

)2
→ L’étude de ces fonctions a été fait au chapitre précédent (résonance du RLC en tension, suivi de uC(t)). En particulier
nous avions démontré que si Q > 1/

√
2 ' 0,7, la courbe de gain présente une résonance.

Remarque : Si Q < 1/
√

2 ' 0,7 il n’y a pas résonance. De plus, si Q < 0,5, alors l’équation caractéristique possède deux
racines réelles, ce qui signifie que le dénominateur de H se factorise, et donc que le filtre est en fait le produit de deux
filtres d’ordre 1. Ceci ce voit sur les diagrammes de Bode car il y a une zone intermédiaire “plane”.
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Pulsation de coupure et bande passante à -3 dB (ici pour H0 = 1) :

Les pulsations de coupures vérifient G(ωc) =
Gmax√

2
.

Le calcul est possible, mais long. On peut toutefois les visualiser graphiquement.

3 – Filtre passe-bande du 2ndordre

La forme canonique pour ce filtre est : H(ω) =

H0

Q

jω

ω0

1+
1

Q

jω
ω0

+

( jω
ω0

)2 =
H0

1 + jQ
(

ω
ω0
− ω0

ω

) .
Exemple : circuit RLC série lorsque l’on prend la tension aux bornes de la résistance (c’est l’étude de la résonance en
intensité du RLC série du chapitre précédent.)
Ci-dessous, H0 = 1.

Voir TD III pour le tracé des asymptotes.
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Expressions du gain et du déphasage :

Cf TD : G = |H| = |H0|√
1 +Q2

(
ω
ω0
− ω0

ω

)2 et ∆ϕ = arg(H) = arg(H0)− arctanQ
(

ω
ω0
− ω0

ω

)
.

→ L’étude de ces fonctions a été fait au chapitre précédent (résonance du RLC en intensité, suivi de i(t)). En particulier
la courbe possède toujours un maximum en ω = ω0.

Il est possible de montrer que si Q > 1, alors la courbe de GdB passe au-dessus des asymptotes en x = 1. Si Q < 1 elle
reste au dessous et le filtre est moins sélectif.
De plus, si Q < 0,5, alors l’équation caractéristique possède deux racines réelles, ce qui signifie que le dénominateur de H
se factorise, et donc que le filtre est en fait le produit de deux filtres d’ordre 1. Ceci ce voit sur les diagrammes de Bode
car il y a une zone intermédiaire “plane”.

Pulsation de coupure et bande passante à -3 dB :

Les pulsations de coupures vérifient G(ωc) =
Gmax√

2
. Le calcul a été fait au chapitre précédent (TD). La bande passante

est |ωc,1 − ωc,2| =
ω0

Q
.

Ainsi plus Q est grand, plus la bande passante est étroite (et plus le filtre est sélectif).

4 – Autres filtres du second ordre

Passe-haut d’ordre 2, coupe bande, passe-tout déphaseur, ordres supérieurs...

5 – Bilan sur ordre 1 et ordre 2

L’ordre d’un filtre est le degré du polynôme en jω au dénominateur deH (lorsqu’écrit comme le rapport de deux polynômes).

Ordre Types d’asymptotes Résonance possible ?

1 horizontale, ou pente de
+20 dB/décade ou de −20 dB/décade non

2 horizontale, ou pente de
±20 dB/décade ou de ±40 dB/décade oui
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